Фатуллаева Л. Ф.

## ВЫПУЧИВАНИЕ НЕЛИНЕЙНО-УПРУГОГО ЭКСЦЕНТРИЧЕСКОГО КОЛЬЦА

### (НИИ Прикладной математики Бакинского государственного университета)

В различных конструкциях в качестве несущих элементов используются тонкостенные кольца, материал которых обладает свойство нелинейных упругостей. В этой связи представляет интерес анализ выпучивания таких элементов. Актуальность и важность подобных задач связаны с изысканием резервов экономии материала с одновременным повышением несущей способности конструкции. Сложность этого исследования состоит в том, что для ряда важных приложений кольца нужно представлять как разностенные оболочки с начальным несовершенством. При этом, последнее имеет тенденцию расти под действием нагрузки и, начиная с некоторого ее значения, рост прогибов может стать катастрофически большим. Это обстоятельство приводит к необходимости учета геометрической нелинейности.

Целью настоящей статьи является исследование устойчивости эксцентричного кольца радиуса R и толщины 2h(q), изготовленного из нелинейно-упругого материала и подверженного равномерному внешнему давлению q. Наличие разностенности можно объяснить, например, неточностью изготовления изделия. Это обстоятельство присуще, практически, всем эксплуатируемым трубам. Для дальнейшего решения задачи воспользуемся вариационным методом смешанного типа, в котором независимо варьируются скорости напряжений и перемещений.

В связи с большим распространением в технике и строительстве кольцевых конструкций, особое значение приобретает развитие методов расчета таких конструкций на устойчивость и прочность. Здесь, для описания свойств материала кольца будем использовать уравнение нелинейной теории упругости, которое запишем в виде [4]:

$$e^{\Phi} = \frac{s}{E} \left\{ 1 + \left( \frac{s}{s_0} \right)^n \right\},\tag{1}$$

где S – напряжение, E и  $S_0$  соответственно модуль упругости и предел пропорциональности материала, а n – показатель нелинейности, принимающий четные значения (2, 4, 6, ...). Отметим, что при n = 2 уравнение (1) является достаточно хорошей аппроксимацией закона упругости для армированных пластиков, некоторых алюминиевых сплавов, дюраля и т.д. Значение n = 4 соответствует диаграмме линейного упрочнения. При достаточно больших n соотношение (1) приближенно описывает закон идеальной пластичности (схема Прандтля) [3].

Обозначим теперь через v и w соответственно перемещение в азимутальном направлении и прогиб. В основу предлагаемой здесь теории тонких колец ставятся следующие предположения:

а) в процессе деформирования учитывается одновременно геометрическая нелинейность по v и w. Необходимо заметить, что при прочих равных условиях учет полной нелинейности позволяет наиболее рационально использовать несущую способность конструкций [1];

в) деформация происходит в плоскости кольца;

с) в силу тонкостенности напряжение *s* по толщине меняется по линейному закону.

Отметим, что применимость и точность последнего допущения обоснована в [2]. Решение задачи осуществим посредством вариационного метода смешанного типа [1]. Преимущество этого подхода состоит в возможности предсказания таких явлений, которые невозможно описать с помощью обычных методов математической физики.

Учитывая гипотезу a), используемый функционал [1, 88] в полярных координатах (q, z) имеет вид

$$\mathbf{K} = R \int_{-h(q)}^{h(q)} \int_{0}^{2p} \left\{ \mathbf{s} \mathbf{k} + \frac{\mathbf{s}}{2R^{2}} \left[ \left( \frac{\partial \mathbf{k}}{\partial q} - \mathbf{k} \right)^{2} + \left( \frac{\partial \mathbf{k}}{\partial q} + \mathbf{k} \right)^{2} \right] - \frac{1}{2} \mathbf{s} \mathbf{k} \mathbf{k}^{p} \right\} dz dq + R \int_{0}^{2p} \mathbf{k} dq, \qquad (2)$$

где *е* – тензор деформации. Под точкой здесь и в дальнейшем понимается дифференцирование по *q* (*ф*=1) [1]. Учитывая выражение (1), функционал (2) принимает следующий вид

$$\mathbf{K} = R \int_{-h(q)}^{h(q)} \int_{0}^{2p} \left\{ \mathbf{s} \mathbf{k} + \frac{\mathbf{s}}{2R^2} \left[ \left( \frac{\partial \mathbf{k}}{\partial q} - \mathbf{k} \right)^2 + \left( \frac{\partial \mathbf{k}}{\partial q} + \mathbf{k} \right)^2 \right] - \frac{R}{2} \int_{0}^{2p} \int_{-h(q)}^{h(q)} \frac{\mathbf{s}^2}{E} \left\{ 1 + \left( n + 1 \right) \left( \frac{\mathbf{s}}{\mathbf{s}_0} \right)^n \right\} dz dq + R \int_{0}^{2p} \mathbf{k} dq \quad .$$
(3)

Разностенность кольца будем аппроксимировать выражением

$$h(q) = h_0 (1 + l \sin q)$$

Из физических соображений следует, что  $I \in [0,1)$ . Вследствие гипотезы плоских сечений имеем

$$\boldsymbol{e} = \boldsymbol{e}_0 - \boldsymbol{k}\boldsymbol{z}$$

Здесь  $\boldsymbol{\epsilon}_0$  и изменение кривизны  $\kappa$  определяются по формулам

$$\boldsymbol{e}_{0} = \frac{1}{R} \left( \boldsymbol{w} + \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{q}} \right) + \frac{1}{2R^{2}} \left\{ \left( \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{q}} + \boldsymbol{w} \right)^{2} + \left( \frac{\partial \boldsymbol{w}}{\partial \boldsymbol{q}} - \boldsymbol{v} \right)^{2} \right\} , \qquad (4)$$

$$k = \frac{1}{R^2} \left( \frac{\partial^2 w}{\partial q^2} - \frac{\partial v}{\partial q} \right), \tag{5}$$

как это следует из уравнений теории тонких оболочек. Следуя предположению с), распределение напряжений по толщине примем линейным

$$S = -\frac{qR}{2h_0} + c(q)\frac{z}{h_0}\cos lq ,$$
 (6)

где *l* принимает четные значения и характеризует число волн в азимутальном направлении.

Заметим, что аппроксимация (6) нуждается в уточнении с целью определения таких l, при которых она удовлетворительна или существует необходимость ее представления в форме

$$s = -\frac{qR}{2h(q)} + c(q)\frac{z}{h(q)}\cos lq.$$
<sup>(7)</sup>

Далее, следуя [1], положим

$$w = w_0(q) + w_1(q) \cos lq \,, \ v = v_0(q) \sin lq \,. \tag{8}$$

После дифференцирования соотношений (4), (5), (7) и (8), запишем:

$$\boldsymbol{\mathscr{E}} = \frac{1}{R} \left( \boldsymbol{\mathscr{A}} + \frac{\partial \boldsymbol{\mathscr{A}}}{\partial q} \right) + \frac{1}{R^2} \left\{ \left( \frac{\partial v}{\partial q} + w \right) \left( \frac{\partial \boldsymbol{\mathscr{A}}}{\partial q} + \boldsymbol{\mathscr{A}} \right) + \left( \frac{\partial w}{\partial q} - v \right) \left( \frac{\partial \boldsymbol{\mathscr{A}}}{\partial q} - \boldsymbol{\mathscr{A}} \right) \right\} - \frac{1}{R^2} \left( \frac{\partial^2 \boldsymbol{\mathscr{A}}}{\partial q^2} - \frac{\partial \boldsymbol{\mathscr{A}}}{\partial q} \right) z,$$
(9)

$$\mathcal{L} = -\frac{R}{2h(q)} + \mathcal{L}(q)\frac{z}{h(q)}\cos lq, \qquad (10)$$

где

$$\mathbf{w} = \mathbf{w}_{0}(q) + \mathbf{w}_{1}(q)\cos lq , \quad \mathbf{w} = \mathbf{w}_{0}(q)\sin lq .$$
(11)

Здесь 🗞, 🖧, 🦓 и & независимые варьируемые величины.

Последующий ход вычислений состоит в том, что соотношения (7) и (9)–(11) подставляются в (3) и функционал К находится как функция  $w_0, w_1, v_0, c$  и производных этих величин по q. В результате, после ряда вычислений, запишем:

$$\begin{split} K &= -2pw_{0}\aleph_{0} - \binom{l^{2}+1}{p}v_{0}\aleph_{0} - \binom{l^{2}+1}{p}w_{1}\aleph_{1} - 2plv_{0}\aleph_{1} - 2pl\aleph_{0}\aleph_{1} + \\ &+ \frac{2ph_{0}^{2}l^{2}}{3R} \aleph_{0}\left(1 + \frac{1}{2}I^{2}\right) + \frac{2ph_{0}^{2}l}{3R} \aleph_{0}\left(1 + \frac{1}{2}I^{2}\right) - \frac{pq}{2}\binom{l^{2}+1}{k^{2}} \aleph_{1}^{2} - \frac{pq}{2}\binom{l^{2}+1}{k^{2}} \aleph_{0}^{2} - \\ &- 2pql\aleph_{1}\aleph_{0} - pq\aleph_{0}^{2} - \frac{R^{3}}{Eh_{0}} - \frac{pR\aleph_{0}}{3E} - \frac{1}{Es_{0}^{n}} \sum_{p=0}^{n} \left(\frac{R^{3}}{8} \frac{h_{0}^{p+1}}{p+1}M_{p-n-1} - R^{2} \frac{h_{0}^{p+2}}{2(p+2)}M_{p-n} \aleph_{0} + \\ &+ R \frac{h_{0}^{p+3}}{2(p+3)}M_{p-n+1} \aleph_{0}\right) \cdot \frac{C_{n}^{p}(n+1)q^{n-p}R^{n-p}(-1)^{n-p}}{2^{n-p}h_{0}^{n+2}}c^{p}, \end{split}$$

где для краткости записи введены следующие обозначения

$$M_{p-n+j} = \left[1 - (-1)^{p+j+2}\right] \int_{0}^{2p} (1 + I \sin q)^{p-n+j} \cos^{p+j+1} lq dq, \quad j = -1, 0, 1;$$
$$C_{n}^{p} = \frac{n!}{p!(n-p)!}.$$

Далее, приравняв

$$\frac{\partial K}{\partial \mathbf{k}_{0}} = 0, \qquad \frac{\partial K}{\partial \mathbf{k}_{0}} = 0, \qquad \frac{\partial K}{\partial \mathbf{k}_{0}} = 0 \quad \mathbf{M} \qquad \frac{\partial K}{\partial \mathbf{k}_{0}} = 0,$$

получим систему четырех обыкновенных дифференциальных уравнений, которую приведем в виде, удобном для последующего интегрирования. Опуская элементарные выкладки, будем иметь

$$\begin{aligned} &-2pw_0 - 2pqw_0^2 = 0, \\ &-(l^2 + 1)pw_1 - 2plv_0 + \frac{2ph_0^2l^2}{3R} \, \pounds \left(1 + \frac{1}{2}l^2\right) - pq(l^2 + 1) \pounds - 2pql \pounds = 0, \\ &-(l^2 + 1)pv_0 - 2plw_1 + \frac{2ph_0^2l}{3R} \, \pounds \left(1 + \frac{1}{2}l^2\right) - pq(l^2 + 1) \pounds - 2pql \pounds = 0, \\ &\frac{2ph_0^2l^2}{3R} \, \iota \pounds \left(1 + \frac{1}{2}l^2\right) + \frac{2ph_0^2l}{3R} \, \pounds \left(1 + \frac{1}{2}l^2\right) - \frac{2pR \pounds_0}{3E} - \\ &- \frac{1}{Es_0^n} \sum_{p=0}^n \left(-R^2 \frac{h_0^{p+2}}{2(p+2)}M_{p-n} + R \frac{h_0^{p+3}}{p+3}M_{p-n+1} \pounds \right) \times \\ &\times \frac{C_n^p (n+1)q^{n-p}R^{n-p} (-1)^{n-p}}{2^{n-p}h_0^{n+2}} \, c^p = 0. \end{aligned}$$

Первое уравнение последней системы выполняется тождественно, и поэтому естественно, в дальнейшем не используется. Итак, нашим последующим этапом будет вычисление неизвестных функциональных аргументов. Для этого систему уравнений необходимо дополнить начальными условиями, которые, исходя из физики явления, заключаются в отсутствии момента, азимутального смещения и наличии начального несовершенства, то есть

$$c(0) = 0, \quad v_0(0) = 0, \quad a \quad w_1(0) = w_1^0 \cos lj \quad ,$$
 (12)

где  $w_1^0$  – задаваемая амплитуда начального несовершенства. Для дальнейших вычислений оказывается целесообразным выразить  $w_1$  через q. Комбинируя второе и третье уравнения системы, запишем:

$$\mathbf{\mathscr{E}} = \frac{3R(l^2 - 1)}{2h_0^2 l^2 \left(1 + \frac{1}{2}l^2\right)} (w_1 q)', \qquad \mathbf{\mathscr{E}} = -\frac{1}{2} \mathbf{\mathscr{E}}_1.$$
(13)

Выполнив интегрирование первого выражения (13) при условиях (12), получим

$$c = \frac{3R(l^2 - 1)}{2h_0^2 l^2 \left(1 + \frac{1}{2}I^2\right)} w_1 q .$$
<sup>(14)</sup>

Используя формулы (13), (14) и исключая из последнего уравнения вышеуказанной системы  $v_0$  и c, приходим к нелинейному дифференциальному уравнению относительно  $k_1$ 

$$\frac{2h_0^2(l^2-1)}{3R} \left(1+\frac{1}{2}I^2\right) \mathbf{k}_1 - \frac{(l^2-1)R^2q}{l^2Eh_0\left(1+\frac{1}{2}I^2\right)} \mathbf{k}_1 - \frac{(l^2-1)R^2}{l^2Eh_0\left(1+\frac{1}{2}I^2\right)} w_1 - \frac{1}{l^2Eh_0\left(1+\frac{1}{2}I^2\right)} w$$

Введем безразмерные величины

$$x = \frac{h}{R}, g = \frac{w_1}{R}, h = \frac{E}{S_0}, t = \frac{q}{E}.$$

Опуская элементарные выкладки, приведем сразу уравнение (15) для различных значений показателя нелинейности г

$$\frac{dt}{dg} = \frac{1}{g} \left[ 0,67(l^2 - 1)x^3 - \frac{l^2 - 1}{l^2(1 + 0,5l^2)^2}t - 0,75\frac{l^2 - 1}{l^2(1 + 0,5l^2)^2}x^{-2}h^2t^3 - 3,04\frac{(l^2 - 1)^3}{l^6(1 + 0,5l^2)^4}x^{-4}h^2g^2t^3 \right] \cdot \left[ \frac{l^2 - 1}{l^2(1 + 0,5l^2)^2} + 2,25\frac{l^2 - 1}{l^2(1 + 0,5l^2)^2}x^{-2}h^2t^2 + (16) + 3,04\frac{(l^2 - 1)^3}{l^6(1 + 0,5l^2)^4}x^{-4}h^2g^2t^2 \right]^{-1}$$

при n = 2,

при 
$$n = 2$$
,  

$$\frac{dt}{dg} = \frac{1}{g} \left[ 0,67(l^2 - 1)x^3 - \frac{l^2 - 1}{l^2(1 + 0.5I^2)^2}t - 0.32\frac{l^2 - 1}{l^2(1 + 0.5I^2)^2}x^{-4}h^4t^5 - -7.6\frac{(l^2 - 1)^3}{l^6(1 + 0.5I^2)^4}x^{-6}h^4g^2t^5 - 6.78\frac{(l^2 - 1)^5}{l^{10}(1 + 0.5I^2)^6}x^{-8}h^4g^4t^5 \right] \times \\
\times \left[ \frac{l^2 - 1}{l^2(1 + 0.5I^2)^2} + 1.57\frac{l^2 - 1}{l^2(1 + 0.5I^2)^2}x^{-4}h^4t^4 + 12.66\frac{(l^2 - 1)^3}{l^6(1 + 0.5I^2)^4}x^{-6}h^4g^2t^4 + +6.78\frac{(l^2 - 1)^5}{l^{10}(1 + 0.5I^2)^6}x^{-8}h^4g^4t^4 \right]^{-1}$$
При  $n = 4$ ,

$$\frac{dt}{dg} = \frac{1}{g} \left[ 0,67(l^2 - 1)x^3 - \frac{l^2 - 1}{l^2(1 + 0,5l^2)^2} t - 0,11 \frac{l^2 - 1}{l^2(1 + 0,5l^2)^2} x^{-6} h^6 t^7 - 6,65 \frac{(l^2 - 1)^3}{l^6(1 + 0,5l^2)^4} x^{-8} h^6 g^2 t^7 - 35,6 \frac{(l^2 - 1)^5}{l^{10}(1 + 0,5l^2)^6} x^{-10} h^6 g^4 t^7 - 14,54 \frac{(l^2 - 1)^7}{l^{14}(1 + 0,5l^2)^8} x^{-12} h^6 g^6 t^7 \right] \cdot \left[ \frac{l^2 - 1}{l^2(1 + 0,5l^2)^2} + 0,77 \frac{l^2 - 1}{l^2(1 + 0,5l^2)^2} x^{-6} h^6 t^6 + 15,51 \frac{(l^2 - 1)^3}{l^6(1 + 0,5l^2)^4} x^{-8} h^6 g^2 t^6 + 49,84 \frac{(l^2 - 1)^5}{l^{10}(1 + 0,5l^2)^6} x^{-10} h^6 g^4 t^6 + 14,54 \frac{(l^2 - 1)^7}{l^{14}(1 + 0,5l^2)^8} x^{-12} h^6 g^6 t^6 \right]^{-1}$$
(18)

при n = 6.

Здесь переход к безразмерному дифференцированию осуществлялся по правилу



**Рис. 1.** Зависимость критической силы выпучивания  $t_{\kappa p}$  от параметра l (a, l = 2; h = 300), (b, l = 2; h = 500), (c, l = 4; h = 300), (d, l = 4; h = 500). Цифры у кривых – значения n

Уравнения (16)–(18) следует проинтегрировать при начальном условии

$$g(0) = \frac{w_1^0}{R} = g_0$$

Таким образом, решение исходной задачи сведено к решению задачи Коши при дополнительном условии, характеризующем предельное состояние кольца:

$$\frac{dt}{dg} = 0$$

Последующая задача состоит в численном интегрировании полученных уравнений методом Рунге-Кутта.

Чтобы количественно дать представление о характере изменения критических сил, получаемых для разных значений показателя нелинейности, приведем следующий пример.

При принятых расчетных данных

$$g_0 = 10^{-1}$$
,  $x = 10^{-1}$ ,  $h = 3 \cdot 10^2$ ;  $5 \cdot 10^2$ 

на рис. 1 приведена зависимость  $t_{\kappa p}$  от l, когда s представлено зависимостью (7).

На рисунке 2 дана аналогичная зависимость при s, определяемой зависимостью (6).



**Рис. 2.** Зависимость критической силы выпучивания  $t_{\kappa p}$  от параметра l (a, l = 2; h = 300), (b, l = 2; h = 500), (c, l = 4; h = 300), (d, l = 4; h = 500). Цифры у кривых – значения n

В таблицах 1 и 2 приведены числовые результаты для случая линейной упругости ( $s_0 \rightarrow \infty$ ).

# Таблица 1. Зависимость критической силы выпучивания $t_{_{\kappa\rho}}$

от параметра 1 для линейной упругости (s представлено зависимостью (7)).

| 1   | l = 2    | l = 4    |
|-----|----------|----------|
| 0,1 | 0,002437 | 0,009747 |
| 0,2 | 0,002510 | 0,010041 |
| 0,3 | 0,002635 | 0,010539 |
| 0,4 | 0,002814 | 0,011257 |
| 0,5 | 0,003054 | 0,012214 |
| 0,6 | 0,003359 | 0,013438 |
| 0,7 | 0,003740 | 0,014959 |
| 0,8 | 0,004204 | 0,016815 |

### Таблица 2. Зависимость критической силы выпучивания $t_{_{K\!D}}$

от параметра 1 для линейной упругости (s представлено зависимостью (6)).

| 1   | l = 2    | l = 4    |
|-----|----------|----------|
| 0,1 | 0,002449 | 0,009795 |
| 0,2 | 0,002557 | 0,010230 |
| 0,3 | 0,002738 | 0,010954 |
| 0,4 | 0,002992 | 0,011967 |
| 0,5 | 0,003317 | 0,013270 |
| 0,6 | 0,003716 | 0,014862 |
| 0,7 | 0,004186 | 0,016744 |
| 0,8 | 0,004729 | 0,018915 |

На основе числового эксперимента можно сделать следующие выводы:

1) при l > 0,4 необходимо учитывать уточненную аппроксимацию для s;

- 2) с увеличением показателя нелинейности критическая сила уменьшается;
- 3) с увеличением числа волнообразования критическая сила возрастает;

4) с увеличением отношения модуля упругости на предел пропорциональности критическая сила уменьшается.

Таким образом, конструированием неоднородности можно увеличить (или уменьшить) критическую силу устойчивости и тем самым, в определенном смысле, оптимизировать процесс.

Автор выражает благодарность профессору Р. Ю.Амензаде за постановку задачи и полезные советы.

г. Баку

Поступила: 23 октября 2007 г.

### ЛИТЕРАТУРА

1. *Амензаде, Р. Ю.* Выпучивание длинной цилиндрической оболочки из нелинейно-упругого материала / Р. Ю.Амензаде, Э. Т.Киясбейли, Л. Ф.Фатуллаева // Механика оболочек и пластин. – Нижний Новгород. – 2002. – С. 87–93.

2. *Амензаде*, *Р.Ю.* О точности линейного распределения напряжения в задачах выпучивания многослойных стержней / Р. Ю.Амензаде, Э. Т.Киясбейли // Доклады Академии Наук Азербайджана. – 2000. – № 4–6. – С. 72–77.

3. Ивлев, Д. Д. Механика пластических сред / Д.Д. Ивлев. – М. : Физмат. Лит, 2001. – Т. 1. – 445 с.

4. Amenzadeh, R. Yu. The limiting state of a rigidly fixed nonlinearly elastic multilayer rod /

R. Yu.Amenzadeh, E. T. Kiyasbeyli, L. F. Fatullaeva // Mechanics of Composite Materials. New-York. – 2006.– V. 42.– № 3.– P. 243–252.