Серия: Механика предельного состояния. 2019.
 № 2 (40). С. 71–78

В. В. Козлов, А. А. Маркин

ПОСТАНОВКА И МЕТОД РЕШЕНИЯ КЛАССА ЗАДАЧ НЕЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ

Тульский государственный университет, г. Тула, Россия

Аннотация. Рассмотрена постановка класса задач нелинейной теории упругости. Предложен численный метод решения задач данного класса. Приведены элементы верификации численного метода для задачи осевого сдвига полого цилиндра. На основании сравнения полученных результатов с CAE Fidesys сформулированы выводы о возможности применения предложенного метода для решения задач рассматриваемого класса.

Ключевые слова: численный метод, полый цилиндр, нелинейная упругость

DOI: 10.26293/chgpu.2019.40.2.007

УДК: 539.3

1. Введение

В работе рассматриваются постановки задач нелинейной теории упругости, напряженно-деформированное состояние которых не зависит от осевой координаты. Частные постановки этого класса задач представлены в работах [1-6]. Отличием данного исследования является обобщение частных постановок и представление единого подхода к их решению.

Многие задачи нелинейной теории упругости не имеют аналитического решения, что нашло отражение в работах [7-9]. Таким образом, актуальным является развитие численных методов, позволяющих получить корректные оценки напряженно-деформированного состояния нелинейно-упругой среды. В работе предложен численный метод, позволяющий решать задачи нелинейной теории упругости выбранного класса. Результаты работы метода иллюстрируются решением задачи об осевом сдвиге полого цилиндра [1]. На основании сравнения полученных результатов с САЕ Fidesys делается вывод о достоверности предложенного метода.

Козлов Виктор Вячеславович

e-mail: vvkozlovtsu@mail.ru, кандидат физико-математических наук, доцент, Тульский государственный университет, г. Тула, Россия,

Маркин Алексей Александрович

e-mail: markin-nikram@yandex.ru, доктор физико-математических наук, профессор, Тульский государственный университет, г. Тула, Россия.

Работа выполнена при частичной поддержке гранта Президента Российской Федерации (проект МД-1803.2019.1) и РФФИ (проект № 18-31-20053).

Поступила 01.05.2019

[©] Козлов В. В., Маркин А. А. 2019

2. Постановки задач.

Рассмотрим постановку задач нелинейной теории упругости для бесконечного цилиндра. Рассматривается класс задач, напряженно-деформированное состояние которых зависит только от радиальной координаты R. Внутренний радиус цилиндра обозначим R_{in} , внешний - R_{en} .

Пусть $(x^1, x^2, x^3) = (R, \theta, z_0)$ - цилиндрические координаты материальной точки цилиндра в начальном состоянии, ось Oz совпадает с осью симметрии тела. Тогда положение точки в начальном состоянии записывается в виде

$$\mathbf{x} = R \mathbf{e}_R + z_0 \mathbf{e}_{z_0} = R \mathbf{e}_1 + z_0 \mathbf{e}_3,$$

где $\mathbf{e}_1 = \mathbf{e}_R, \, \mathbf{e}_2 = \mathbf{e}_\theta, \, \mathbf{e}_3 = \mathbf{e}_{z_0}$ - базисные векторы цилиндрической системы.

Будем полагать (r, φ, z) - цилиндрические координаты этой же точки в деформированном состоянии. В рамках данной модели связь между указанными координатами может быть выражена в виде:

$$r = R + u_R(R); \quad \varphi = \theta + u_\theta(R); \quad z = z_0 + u_{z_0}(R)$$
 (1)

Для рассматриваемого класса задач удобно ввести подвижную систему координат, повернутую относительно исходной на угол u_{θ} и характеризуемую базисом $\mathbf{e}_{1}^{(n)} = \mathbf{e}_{r}$, $\mathbf{e}_{2}^{(n)} = \mathbf{e}_{\varphi}$, $\mathbf{e}_{3}^{(n)} = \mathbf{e}_{z}$, связанным с базисом исходной системы координат соотношениями

$$\mathbf{e}_r = \cos(u_\theta) \, \mathbf{e}_R + \sin(u_\theta) \, \mathbf{e}_\theta, \mathbf{e}_\varphi = -\sin(u_\theta) \, \mathbf{e}_R + \cos(u_\theta) \, \mathbf{e}_\theta, \mathbf{e}_z = \mathbf{e}_{z_0}.$$

Тогда с учётом (1) радиус-вектор точки в деформированном состоянии запишем в виде:

$$\mathbf{x} = (R + u_R) \mathbf{e}_r + (z_0 + u_{z_0}) \mathbf{e}_{z_0}$$

Запишем выражения векторов материального базиса $\ni_i = \frac{\partial x}{\partial x^i}$:

$$\exists 1 = (1 + u_R') \mathbf{e}_r + (R + u_R) u_\theta' \mathbf{e}_\varphi + u_{z_0}' \mathbf{e}_{z_0}, \exists 2 = (R + u_R) \mathbf{e}_\varphi, \exists 3 = \mathbf{e}_{z_0}$$

Из последних формул можно найти базис \ni i :

$$\ni^{1} = \frac{\mathbf{e}_{r}}{1 + u_{R}'}, \ni^{2} = \frac{\mathbf{e}_{\varphi}}{R + u_{R}} - \frac{u_{\theta}'}{1 + u_{R}'} \mathbf{e}_{r}, \ni^{3} = \mathbf{e}_{z_{0}} - \frac{u_{z_{0}}'}{1 + u_{R}'} \mathbf{e}_{r}$$
(2)

Найдены представления аффинора деформации Φ , тензора Коши-Грина G:

$$\Phi = (1 + u_R') \mathbf{e}_R \mathbf{e}_r + (R + u_R) u_\theta' \mathbf{e}_R \mathbf{e}_\varphi +
+ u_{z_0}' \mathbf{e}_R \mathbf{e}_z + (1 + \frac{u_R}{R}) \mathbf{e}_\theta \mathbf{e}_\varphi + \mathbf{e}_{z_0} \mathbf{e}_z = \Phi^{ij} \mathbf{e}_i \mathbf{e}_i^{(n)},$$
(3)

$$\Rightarrow \mathbf{G} = \mathbf{U}^{2} = \mathbf{\Phi} \cdot \mathbf{\Phi}^{T} = \left((1 + u_{R}^{\prime})^{2} + u_{z_{0}}^{\prime 2} + (R u_{\theta}^{\prime})^{2} \right) \mathbf{e}_{R} \mathbf{e}_{R} + + u_{z_{0}}^{\prime} \left(\mathbf{e}_{R} \mathbf{e}_{z_{0}} + \mathbf{e}_{z_{0}} \mathbf{e}_{R} \right) + \frac{(R + u_{R})^{2}}{R} u_{\theta}^{\prime} \left(\mathbf{e}_{R} \mathbf{e}_{\theta} + \mathbf{e}_{\theta} \mathbf{e}_{R} \right) + + \frac{(R + u_{R})^{2}}{R^{2}} \mathbf{e}_{\theta} \mathbf{e}_{\theta} + \mathbf{e}_{z_{0}} \mathbf{e}_{z_{0}} = G^{ij} \mathbf{e}_{i} \mathbf{e}_{j}$$

$$(4)$$

Аналитические представления других мер описания деформированного состояния среды, таких как левого тензора Генки Γ , левой меры искажения U, тензора поворота \mathbf{R} громоздки и неудобны в использовании. Однако данные меры могут использоваться в определяющих соотношениях при определении напряженного состояния среды.

Зная обобщенные перемещения u_R , u_θ , u_{z_0} , по формуле (4) можно найти числовые значения G^{ij} в любой точке цилиндра. Решив стандартную задачу определения собственных значений λ^i и векторов $\mathbf{a}_i = a_i^j \mathbf{e}_j$ меры Коши-Грина, получим представления мер \mathbf{G} , \mathbf{U} , $\mathbf{\Gamma}$ в виде

$$\mathbf{G} = \lambda^{i} \mathbf{a}_{i} \mathbf{a}_{i}$$

$$\mathbf{G} = \mathbf{U}^{2} \Rightarrow \mathbf{U} = \sqrt{\lambda^{i}} \mathbf{a}_{i} \mathbf{a}_{i}$$

$$\mathbf{\Gamma} = \ln \mathbf{U} \Rightarrow \mathbf{\Gamma} = \ln \lambda^{i} \mathbf{a}_{i} \mathbf{a}_{i}$$
(5)

Поскольку диады в представлении (5) меры **G** состоят только из базисных векторов неподвижной цилиндрической системы координат, то производные меры **U**, **Г** также будут содержать в диадах только векторы \mathbf{e}_i . В то же время методика получения тензора поворота $\mathbf{R} = \mathbf{U}^{-1} \cdot \mathbf{\Phi}$ с учетом формулы (3) указывает, что диадное представление тензора **R** будет иметь вид:

$$\mathbf{R} = R^{ij} \mathbf{e}_i \mathbf{e}_i^{(n)} \tag{6}$$

При необходимости могут быть конкретизированы и другие меры описания деформированного состояния. Формулы (3)—(5) показывают, что компоненты тензоров деформаций зависят от обобщенных перемещений, их производных и радиальной координаты.

Ввиду отсутствия массовых сил уравнение равновесия примет вид

$$\nabla \cdot \mathbf{S} = \mathbf{0}$$
,

где $\nabla = \ni i \frac{\partial}{\partial x^i}$ - оператор Гамильтона в актуальном базисе, ${\bf S}$ - тензор напряжений Копи.

В силу того, что нагружение не зависит от координаты z_0 , компоненты тензора напряжений зависят только от радиальной координаты: $s^{ij} = s^{ij}(R)$. Положим, что тензор напряжений с помощью выбранного определяющего соотношения записан разложением по диадам, составленным из базисных векторов повернутой цилиндрической системы координат, т.е. $\mathbf{S} = s^{ij} \mathbf{e}_i^{(n)} \mathbf{e}_j^{(n)}$. Тогда, рассмотрев последнее выражение и конкретизируя производные $\frac{\partial \mathbf{S}}{\partial x^i}$, с учетом (2) получаем уравнение равновесия в виде

$$\nabla \cdot \mathbf{S} = \left(\frac{1}{1+u_R'} \frac{ds^{RR}}{dR} + \frac{s^{R\theta} - s^{\theta\theta}}{R + u_R}\right) \mathbf{e}_r + \left(\frac{1}{1+u_R'} \frac{ds^{R\theta}}{dR} + \frac{2s^{R\theta}}{R + u_R}\right) \mathbf{e}_\varphi + \left(\frac{1}{1+u_R'} \frac{ds^{Rz}}{dR} + \frac{s^{Rz}}{R + u_R}\right) \mathbf{e}_z = \mathbf{0}$$
(7)

В качестве граничных условий используем значения функций перемещений на радиусах цилиндра:

$$u_{\theta}(R_{in}) = u_{\theta,in}, u_{\theta}(R_{en}) = u_{\theta,en}. \tag{8}$$

$$u_{z_0}(R_{in}) = u_{z_0,in}, u_{z_0}(R_{en}) = u_{z_0,en}.$$
 (9)

$$u_R(R_{in}) = u_{R,in}, u_R(R_{en}) = u_{R,en}.$$
 (10)

Таким образом, (7) - (10) вместе с формулой для компонент тензора истинных напряжений Коши определяют постановку решаемой задачи определения обобщенных перемещений.

3. Численный метод.

Опишем численный метод, применяемый для решения краевой задачи (7)—(10) и позволяющий найти обобщенные перемещения. Чтобы постановка (7)—(10) стала полной, необходимо использовать определяющее соотношение. Тогда, из формул для

мер описания деформированного состояния (3)—(6), конкретизированные компоненты тензора напряжений, входящие в (7), будут зависеть от обобщенных перемещений и их производных первого порядка по радиальной координате. Запишем выражения, позволяющие сформулировать конечно-разностную аппроксимацию компонент тензора истинных напряжений.

Разделим отрезок значений радиальной координаты $R \in [R_{in}, R_{en}]$ на дискретные значения с шагом h:

$$R_i = R_{in} + ih, \quad i = 0, ..., n, \quad h = \frac{R_{en} - R_{in}}{n}$$
 (11)

Точки $R_0 = R_{in}$, $R_n = R_{en}$ будем соответственно называть левой и правой граничными точками, прочие точки - внутренними. Тогда в каждой дискретной точке выбранную функцию обобщенного перемещения обозначим f_i , аппроксимация первой производной обобщенного перемещения запишем с точностью до $O(h^2)$.

При этом во внутренних точках используем выражения

$$f'|_{R=R_i} = f'_i = \frac{f|_{R=R_{i+1}} - f|_{R=R_{i-1}}}{2h} = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2),$$
 (12)

на левой граничной точке

$$f'|_{R=R_0} = f'_0 = \frac{-3f_0 + 4f_1 - f_2}{2h} + O(h^2),$$
 (13)

на правой граничной точке

$$f'\big|_{R=R_n} = f'_n = \frac{3f_n - 4f_{n-1} + f_{n-2}}{2h} + O(h^2).$$
 (14)

Дискретные значения производных первого порядка компонент тензора истинных напряжений Коши по радиальной координате $(s^{ij})'_R$, входящих в (7), могут быть записаны с помощью аналогичных (12)—(14) формул.

Таким образом, в каждой точке (11) относительно дискретных значений обобщенных перемещений записываем три нелинейных уравнения (7). Граничные условия (8)—(10) используются в левой и правой граничных точках. Получаем замкнутую систему нелинейных уравнений. Процесс нахождения решения этой системы реализован итерационным численным методом Левенберга-Марквардта [10, 11].

4. Результаты для осевого сдвига.

Рассмотрим осевой сдвиг полого цилиндра. Для данного вида деформированного состояния граничные условия (8)—(10) записываются в виде

$$u_{\theta}(R_{in}) = 0, \ u_{\theta}(R_{en}) = 0,$$

 $u_{z_0}(R_{in}) = 0, \ u_{z_0}(R_{en}) = u_{z_0,en},$
 $u_{R}(R_{in}) = 0, \ u_{R}(R_{en}) = 0$

Используем определяющее соотношение [12]

$$\sigma_R = 2G\tilde{\Gamma} + K(\Gamma \cdot \cdot \mathbf{E})\mathbf{E},$$

где σ_R -повернутый обобщенный тензор напряжений, $\tilde{\Gamma}$ - девиатор тензора деформаций Генки, \mathbf{E} - единичный тензор, G - модуль сдвига, K - модуль объемного расширения.

В качестве начального приближения функций перемещений использовались аналитические результаты задачи для несжимаемого материала, полученные в рамках линейной теории упругости:

$$u_R = 0,$$

$$u_{\theta} = 0,$$

$$u_{z_0} = \frac{u_{z_0,en}(\ln R - \ln R_{in})}{\ln R_{en} - \ln R_{in}}.$$

Тогда, с помощью программного комплекса, реализующего численный алгоритм, для параметров $R_{in}=0.6$ м, $R_{en}=1$ м, $u_{z_0,en}=0.25$ м, G=0.5 МПа, K=50 МПа получим распределения обобщенных перемещений, что позволяет конкретизировать напряженно-деформированное состояние среды.

Для проверки достоверности результатов используем сравнения полученных обобщенных перемещений и напряжений с CAE Fidesys. Поскольку в промышленных CAE необходимо рассматривать геометрически конечные объекты, рассмотрим цилиндр высотой 10 м. С учётом используемых значений $R_{in}=0.6$ м, $R_{en}=1$ м, можно считать, что посередине высоты цилиндра краевые эффекты на торцах будут оказывать незначительное влияние на напряженно-деформированное состояние. Задав необходимые параметры, соответствующие рассмотренной постановке осевого сдвига, в CAE Fidesys, получим напряженно-деформированное состояние.

Ниже представлены зависимости перемещений, компоненты напряжений s^{Rz_0} от радиальной координаты, полученные с помощью предложенного численного метода и CAE Fidesys.

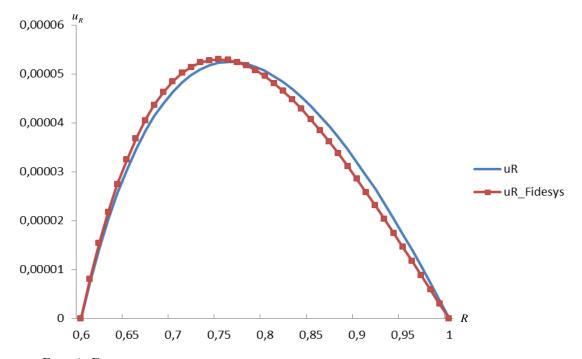


Рис. 1. Радиальное перемещение в зависимости от радиальной координаты.

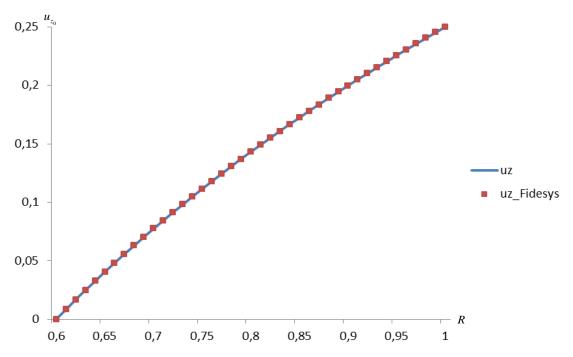


Рис. 2. Осевое перемещение в зависимости от радиальной координаты.

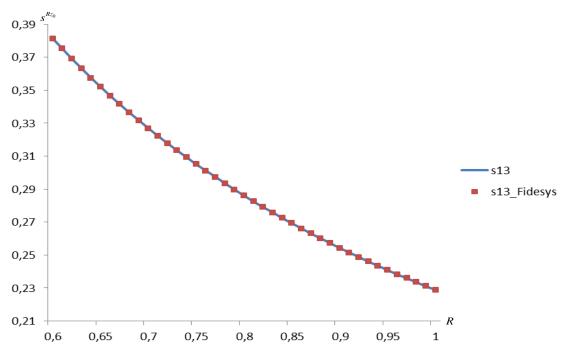


Рис. 3. Компонента тензора напряжений s^{Rz_0} в зависимости от радиальной коордианты.

Таким образом, можно утверждать, что разработанный программный комплекс позволяет качественно оценить напряженно-деформированного состояния рассмотренного осевого сдвига полого цилиндра и может быть использован для определения напряженно-деформированного состояния предлагаемых в работе постановок задач нелинейной теории упругости.

ЛИТЕРАТУРА

- [1] Козлов В.В., Маркин А.А. Комбинированный сдвиг сжимаемого нелинейно-упругого полого цилиндра // Известия ТулГУ. Естественные науки. 2015. Т. 2. С. 42–52.
- [2] Чиков В.С. Экспериментальные методики конкретизации определяющих соотношений с использованием цилиндрических образцов // Вестник ЧГПУ им. И.Я. Яковлева. Серия: Механика предельного состояния. 2018. № 2. с. 38–49.
- [3] Пономарев С.Д., Бидерман В.Л. Расчеты на прочность в машиностроении. Москва: МАШГИЗ, 1958. Т. 2. 975 с.
- [4] Millard F. B., Jiang Q. . On compressible materials capable of sustaining axisymmetric shear deformations. Part 2: rotational shear of isotropic hyperelastic materials // Q J Mechanics Appl Math. 1997. Vol. 50, no. 2. p. 211–237.
- [5] Лавендел Э.Э. Расчет резинотехнических изделий. М.: Машиностроение, 1976. 228 с.
- [6] Лурье А.И. Нелинейная теория упругости. М: Наука. Главная редакция физико-математической литературы, 1980. 512 с.
- [7] Курочка К.С. Метод численного решения краевых задач нелинейной теории упругости // Вестник Гомельского государственного технического университета им. П.О. Сухого. № 1. С. 49–57.
- [8] Победря Б.Е. Численные методы в теории упругости и пластичности. Учеб. пособие. 2 изд. М.: Изд-во МГУ, 1995. 366 с.
- [9] Пешков И.М. Численное моделирование разрывных решений в нелинейной теории упругости // Прикладная математика и техническая физика. Т. 50, № 5. с. 152–161.
- [10] Levenberg K. Method for the Solution of Certain Problems in Last Squares // Quart. Appl. Math. 1944. no. 2. P. 164–168.
- [11] Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // SIAM Journal on Applied Mathematics. 1963. Vol. 11, no. 2. P. 431–441.
- [12] Маркин А.А., Христич Д.В. Нелинейная теория упругости: учеб. пособие. 2 изд. Тула: Изд-во ТулГУ, 2007. 92 с.

V. V. Kozlov, A. A. Markin

FORMULATION AND METHOD FOR SOLVING A CLASS OF NONLINEAR ELASTICITY PROBLEMS

Tula State University, Tula, Russia

Abstract. The formulation of the class of problems of the nonlinear theory of elasticity is considered. A numerical method for solving problems of this class is proposed. The elements of verification of the numerical method for the axial shear problem of a hollow cylinder are given. Based on a comparison of the results obtained with CAE Fidesys, conclusions are formulated about the possibility of using the proposed method for solving problems of the considered class.

Keywords: numerical method, hollow cylinder, nonlinear elasticity

REFERENCES

- [1] Kozlov V., Markin A. Combined shear compressible nonlinearity elastic hollow cylinder // Izvestiya Tula State University. Physical sciences. 2015. Vol. 2. P. 42–52. (in Russian).
- [2] Chikov V. Experimental methods of concerning the determining relations with the use of cylindrical samples // Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State. 2018. no. 2. p. 38–49. (in Russian).
- [3] Ponomarev S., Biderman V. Strength calculations in mechanical engineering. M.: MASHGIZ, 1958. Vol. 2. 975 p. (in Russian).
- [4] Millard F. B., Jiang Q. On compressible materials capable of sustaining axisymmetric shear deformations. Part 2: rotational shear of isotropic hyperelastic materials // Q J Mechanics Appl Math. 1997. Vol. 50, no. 2. p. 211–237.
- [5] Lavendel E. Calculations of rubber-technical products. M.: Mashinostroyeniye, 1976. 228 p. (in Russian).
- [6] Lur'ye A. Nonlinear theory of elasticity. M: Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1980. 512 p. (in Russian).
- [7] Kurochka K. Metod chislennogo resheniya krayevykh zadach nelineynoy teorii uprugosti // Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo. no. 1. P. 49–57. (in Russian).
- [8] Pobedrya B. Numerical methods in elasticity and plasticity theory. Tutorial. 2 edition. M.: Izd-vo MGU, 1995. 366 p. (in Russian).
- [9] Peshkov I. Numerical simulation of discontinuous solutions in nonlinear elasticity theory // Journal of Applied Mechanics and Technical Physics. Vol. 50, no. 5. P. 858–865. (in Russian).
- [10] Levenberg K. Method for the Solution of Certain Problems in Last Squares // Quart. Appl. Math. 1944. no. 2. P. 164–168.
- [11] Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters // SIAM Journal on Applied Mathematics. 1963. Vol. 11, no. 2. P. 431–441.
- [12] Markin A., Khristich D. Nonlinear theory of elasticity: tutorial. 2 edition. Tula: Izd-vo TulGU, 2007. 92 p. (in Russian).

Kozlov Viktor Vyacheslavovich

e-mail: vvkozlovtsu@mail.ru, Dr. Sci. Phys. & Math., Associate Professor, Tula State University, Tula.

Markin Alexey Alexandrovich

e-mail: markin-nikram@yandex.ru, Dr. Sci. Phys. & Math., Professor, Tula State University, Tula.