ВЕСТНИК ЧГПУ им. И. Я. ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ № 1 • 2007

Буренин А. А., Ковтанюк Л. В., Устинова А. С.

ВИСКОЗИМЕТРИЧЕСКОЕ ТЕЧЕНИЕ УПРУГОВЯЗКОПЛАСТИЧЕСКОГО МАТЕРИАЛА МЕЖДУ ЖЕСТКИМИ КОАКСИАЛЬНЫМИ ЦИЛИНДРИЧЕСКИМИ ПОВЕРХНОСТЯМИ

(ИАПУ ДВО РАН, Институт ДВГТУ)

Вискозиметрические опыты являются основными при определении постоянных вязкой и вязкопластической сред. Однако в этих экспериментах необходимо иметь точные решения соответствующей краевой задачи. В теории вязких и неньютоновских жидкостей такие решения давно получены и являются уже классическими [1; 6; 7]. Но существуют гидродинамические процессы, а также процессы интенсивного формоизменения твердых деформируемых тел на стадии пластического течения материалов, когда изучаемые эффекты диктуются упругими свойствами среды. К таким эффектам относятся заметные геометрические изменения в форме и объеме интенсивно продеформированных тел в процессах разгрузки после снятия нагружающих усилий и формирование остаточных напряжений в этих процессах. При изучении таких эффектов необходимо пользоваться математической моделью больших упругопластических деформаций. Неньютоновский характер вискозиметрического течения вместе с усложнениями, которые вносит учет упругих свойств, приводит к существенно нелинейной краевой задаче математической физики с неизвестными движущимися границами (границы упруговязкопластических областей).

Ниже приводится решение краевой задачи о вязкопластическом течении несжимаемого упруговязкопластического материала, находящегося в зазоре между двумя жесткими коаксиальными цилиндрическими поверхностями, при повороте внутренней поверхности. Решение получено в рамках модели больших деформаций. Рассчитаны параметры рассматриваемого процесса как в области развивающегося вязкопластического течения, так, и в областях упругого деформирования.

1. Основные модельные соотношения. Для решения поставленной задачи воспользуемся моделью больших упругопластических деформаций, подробно описанной в [2] и обобщенной на случай учета вязких свойств в [5]. В декартовой прямоугольной системе координат компоненты не измеримых в опытах обратимой e_{ij} и необратимой p_{ij} составляющие тензора полных деформаций Альманси d_{ij} определяются дифференциальными уравнениями изменения (переноса) в форме

$$\frac{De_{ij}}{Dt} = e_{ij} - e_{ij}^{p} - \frac{1}{2} \left(e_{ik} \left(e_{kj} - e_{kj}^{p} \right) - \left(e_{ik} - e_{ik}^{p} \right) e_{kj} + e_{ik} F_{kj} - F_{ik} e_{kj} \right),
\frac{Dp_{ij}}{Dt} = e_{ij}^{p} - p_{is} F_{sj} - p_{is} e_{sj}^{p} + F_{si} p_{sj} - e_{is}^{p} p_{sj},
e_{ij} = \frac{1}{2} \left(v_{i,j} + v_{j,i} \right), \quad v_{i} = \frac{du_{i}}{dt} = \frac{\partial u_{i}}{\partial t} + v_{j} u_{i,j}, \quad u_{i,j} = \frac{\partial u_{i}}{\partial x_{j}},$$

$$F_{ij} = A^{-1} \left(B^{2} \left(e_{ik} e_{kj} - e_{ik} e_{kj} \right) + B \left(e_{ik} e_{ks} e_{sj} - e_{ik} e_{ks} e_{sj} \right) + e_{ik} e_{ks} e_{st} e_{tj} - e_{ik} e_{ks} e_{st} e_{tj} \right),$$

$$A = 8 - 8E_{1} + 3E_{1}^{2} - E_{2} - \frac{1}{3} E_{1}^{3} + \frac{1}{3} E_{3}, \quad B = 2 - E_{1},$$

$$E_{1} = e_{kk}, \quad E_{2} = e_{ij} e_{ji}, \quad E_{3} = e_{ij} e_{jk} e_{ki}.$$

$$(1.1)$$

В (1.1) u_i , v_i – компоненты векторов перемещений и скоростей точек среды, F_{ij} – нелинейная составляющая тензора вращения $r_{ij} = w_{ij} + F_{ij}$, определяющая его отличие от тензора жесткого вращения $w_{ij} = \frac{1}{2}(v_{i,j} - v_{j,i})$, $\frac{D}{Dt}$ – оператор производной Яумана $\left(\frac{Dn_{ij}}{Dt} = \frac{dn_{ij}}{dt} - w_{ik}n_{kj} + n_{ik}w_{kj}\right)$, источник e_{ij}^p в уравнении изменения тензора необратимых деформаций – тензор скоростей их изменения. Согласно уравнениям (1.1), в условиях разгрузки ($e_{ij}^p = 0$) компоненты тензора необратимых деформаций изменяются так же, как при жестком движении тела. Компоненты тензора полных деформаций Альманси d_{ij} через его составляющие e_{ij} и p_{ij} представляются в виде

$$d_{ij} = e_{ij} + p_{ij} - \frac{1}{2} e_{ik} e_{kj} - e_{ik} p_{kj} - p_{ik} e_{kj} + e_{is} p_{sk} e_{kj}.$$
 (1.2)

Следуя (1.2), обратимыми деформациями следовало бы назвать компоненты тензора $e_{ij} - \frac{1}{2}e_{ik}e_{kj}$, так как именно им оказываются равными компоненты полных деформаций при отсутствии пластических ($p_{ij} = 0$). Однако это только усложняет запись не только уравнения переноса для обратимых деформаций, но и запись, как увидим, формулы Мурнагана при наличии необратимых деформаций ($p_{ij} \neq 0$) и, следовательно, всех последующих соотношений.

Напряжения в среде полностью определяются обратимыми деформациями и, следуя законам термодинамики, для несжимаемой среды связаны с ними зависимостями

$$\boldsymbol{s}_{ij} = -P\boldsymbol{d}_{ij} + \frac{\partial W}{\partial \boldsymbol{d}_{ik}} \left(\boldsymbol{d}_{kj} - 2\boldsymbol{d}_{kj} \right) \quad npu \quad \boldsymbol{p}_{ij} = 0,$$

$$\boldsymbol{s}_{ij} = -P_1 \boldsymbol{d}_{ij} + \frac{\partial W}{\partial \boldsymbol{e}_{ik}} \left(\boldsymbol{d}_{kj} - \boldsymbol{e}_{kj} \right) \quad npu \quad \boldsymbol{p}_{ij} \neq 0.$$
(1.3)

В (1.3) *Р* и *P*₁ – добавочные гидростатические давления. Считая среду изотропной, упругий потенциал *W* примем в виде

$$W = -2mJ_{1} - mJ_{2} + bJ_{1}^{2} + (b - m)J_{1}J_{2} - cJ_{1}^{3} + \dots$$

$$J_{k} = \begin{cases} L_{k} & npu & p_{ij} = 0 \\ I_{k} & npu & p_{ij} \neq 0 \end{cases}$$

$$L_{1} = d_{kk}, \quad L_{2} = d_{ik}d_{ki}, \quad I_{1} = e_{kk} - \frac{1}{2}e_{sk}e_{ks}, \quad I_{2} = e_{st}e_{ts} - e_{sk}e_{kt}e_{ts} + \frac{1}{4}e_{sk}e_{kt}e_{tn}e_{ns}.$$
(1.4)

Здесь
$$m$$
, b , c – упругие постоянные среды, а выбор инвариантов I_1 , I_2 тензора
обратимых деформаций в таком виде обеспечивает предельный переход от второй зави-
симости (1.3) к первой при стремлении необратимых деформаций к нулю.

Считаем, что необратимые деформации в материале накапливаются при достижении напряженным состоянием поверхности нагружения, которая в условиях принимаемого принципа максимума Мизеса является пластическим потенциалом. В качестве такой поверхности будем использовать условие пластичности Треска, обобщенное на случай учета вязких свойств материала [3, 4], в форме

$$\max \left| \boldsymbol{s}_{i} - \boldsymbol{s}_{j} \right| = 2k + 2h \max \left| \boldsymbol{e}_{k}^{p} \right|, \tag{1.5}$$

где k – предел текучести, h – коэффициент вязкости, s_i , e_k^p – главные значения тензоров напряжений и скоростей пластических деформаций.

Скорости необратимых деформаций связаны с напряжениями ассоциированным законом пластического течения

$$\boldsymbol{e}_{ij}^{p} = \boldsymbol{I} \frac{\partial f}{\partial \boldsymbol{s}_{ij}}, \quad f(\boldsymbol{s}_{ij}, \boldsymbol{e}_{ij}^{p}) = \boldsymbol{k}, \quad \boldsymbol{I} > 0.$$
(1.6)

2. Упругое равновесие. Пусть упруговязкопластический материал, свойства которого описываются модельными зависимостями, приведенными выше, заполняет слой между двумя цилиндрическими матрицами с жесткими стенками. Рассмотрим деформирование данного материала при повороте внутреннего жесткого цилиндра радиуса $r = r_0$, в то время, когда внешний цилиндр радиуса $r = R_0$ остается неподвижным. Таким образом, в цилиндрической системе координат r, j, z граничное условие имеет вид

$$\left. \overline{u} \right|_{r=R_0} = 0.$$
 (2.1)

Считаем, что в рассматриваемом случае все точки среды, в том числе и граничные, движутся по окружностям. Составляющие вектора перемещений в этом случае имеют вид

$$u_r = r(1 - \cos q), \quad u_j = r \sin q,$$
 (2.2)

где, q = q(r, t) – центральный угол закручивания.

При увеличении угла q со временем происходит первоначально только упругое деформирование. При достижении некоторого значения $q_0 = q(t_0)$ в окрестности внутренней жесткой стенки начинается пластическое течение. Примем в дальнейшем $t_0 = 0$ и вычислим параметры напряженно-деформированного состояния в этот момент времени.

Отличными от нуля компонентами тензора Альманси в рассматриваемом случае являются

$$d_{rr} = -\frac{1}{2}g^2, \quad d_{rj} = \frac{1}{2}g, \quad g = r\frac{\partial q}{\partial r}.$$
 (2.3)

Согласно зависимостям (1.3) и (1.4) компоненты напряжений с точностью слагаемых до второго порядка по деформациям найдутся зависимостями

$$s_{rr} = s_{zz} = -(P + 2m) - \frac{1}{2}(b + m)g^{2} = -s,$$

$$s_{jj} = -(P + 2m) + \frac{1}{2}(b - m)g^{2} = -s + mg^{2},$$

$$s_{rj} = mg.$$
(2.4)

Из условий равновесия

$$\frac{\partial s_{rr}}{\partial r} + \frac{s_{rr} - s_{jj}}{r} = 0,$$

$$\frac{\partial s_{rj}}{\partial r} + 2\frac{s_{rj}}{r} = 0,$$
(2.5)

воспользовавшись граничным условием (2.1) и условием пластичности в форме $(s_{rr} - s_{jj})^2 + 4s_{rj}^2 = 4k^2$,

найдем угол q_0 , при повороте на который начнется пластическое течение

$$q_0 = \frac{k}{2m} \left(1 - \frac{r_0^2}{R_0^2} \right).$$
(2.6)

Компоненты напряжений в условиях упругого равновесия определяются зависимостями

$$\boldsymbol{S}_{rr} = \boldsymbol{S}_{zz} = \frac{k^2}{4m} \left(1 - \frac{r_0^4}{r^4} \right) + \boldsymbol{S}_0, \qquad \boldsymbol{S}_{jj} = \frac{k^2}{4m} \left(1 + 3\frac{r_0^4}{r^4} \right) + \boldsymbol{S}_0, \qquad \boldsymbol{S}_{rj} = -k\frac{r_0^2}{r^2},$$

где S_0 – значение компоненты напряжений S_{rr} на поверхности $r = r_0$ в момент начала пластического течения.

Из соотношений (1.2) найдем необходимые для дальнейших вычислений зависимости

$$e_{rj} = d_{rj} = -\frac{k}{2m} \frac{r_0^2}{r^2}, \qquad e_{rr} = -\frac{3}{2} e_{rj}^2, \qquad e_{jj} = \frac{1}{2} e_{rj}^2.$$
 (2.7)

3. Необратимое деформирование. С момента времени $t = t_0 = 0$ при дальнейшем увеличении угла поворота в окрестности внутреннего жесткого цилиндра развивается область вязкопластического течения, ограниченная поверхностями $r_0 \le r \le r_1(t)$, где $r_1(t)$ – движущаяся граница пластической области, отделяющая ее от зоны упругого деформирования $r_1(t) \le r \le R_0$.

Согласно зависимостям (1.1) и (1.2) кинематика среды определяется соотношениями

$$u_{r} = r(1 - \cos q(r, t)), \qquad u_{j} = r \sin q(r, t),$$

$$v_{j} = r \frac{\partial q}{\partial t}, \qquad e_{rj} = \frac{1}{2} \left(\frac{\partial v_{j}}{\partial r} - \frac{v_{j}}{r} \right) = \frac{\partial d_{rj}}{\partial t} = \frac{1}{2} r \frac{\partial^{2} q}{\partial r \partial t},$$

$$e_{rj} = e_{rj}^{e} + e_{rj}^{p} = \frac{\partial e_{rj}}{\partial t} + \frac{\partial p_{rj}}{\partial t},$$

$$e_{rr}^{p} = \frac{\partial p_{rr}}{\partial t} + 2 p_{rj} \left(r_{jr} + e_{rj}^{p} \right), \qquad e_{jj}^{p} = \frac{\partial p_{jj}}{\partial t} + 2 p_{rj} \left(r_{rj} + e_{rj}^{p} \right),$$

$$e_{rr}^{p} = -e_{jj}^{p} = -2 e_{rj}^{p} e_{rj}.$$
(3.1)

Интегрированием уравнений равновесия (квазистатическое приближение) в области обратимого деформирования так же, как и ранее, используя условие (2.1), найдем

$$\boldsymbol{s}_{rj} = \frac{c(t)}{2\boldsymbol{m}^{r^2}}, \qquad \boldsymbol{q}(r,t) = \frac{c(t)(r^2 - R_0^2)}{2\boldsymbol{m}R_0^2 r^2}.$$
(3.2)

В (3.2) c(t) – неизвестная функция интегрирования.

Для компонент напряжений в области вязкопластического течения $r_0 \le r \le r_1(t)$, следуя второй зависимости (1.3), получим

$$s_{rr} = s_{zz} = -(P_1 + 2m) - 2(b + m)e_{rj}^2 = -s_1(t),$$

$$s_{jj} = -(P_1 + 2m) + 2(b - m)e_{rj}^2 = -s_1(t) + 4me_{rj}^2,$$

$$s_{rj} = 2me_{rj}.$$
(3.3)

При записи выражений (3.3) использовались кинематические зависимости (2.7). С другой стороны, интегрированием уравнений равновесия можно получить

$$\mathbf{S}_{rj} = \frac{m(t)}{r^2}, \qquad e_{rj} = \frac{m(t)}{2mr^2}.$$
 (3.4)

Из условий непрерывности компонент напряжений на упругопластической границе $r = r_1(t)$ получим, что

$$n(t) = c(t), \qquad s(t) = s_1(t).$$

Условие пластического течения (1.5) в нашем случае перепишется в форме

$$s_{rj}^{2} - \left(k + h \left| e_{rj}^{p} \right| \right)^{2} = 0.$$
(3.5)

Следуя ассоциированному закону пластического течения (1.6) и условию (3.5), найдем

$$s_{rj} = -k + he_{rj}^{p}, \quad I = -\frac{e_{rj}^{p}}{k - he_{rj}^{p}}.$$
 (3.6)

Сравнение зависимостей (3.4) и (3.6) позволяет найти скорость пластической деформации

$$e_{rj}^{p} = \frac{1}{h} \left(\frac{c(t)}{r^{2}} + k \right)$$
(3.7)

Учитывая второе равенство (3.4), из кинематических зависимостей (3.1), используя условие непрерывности функции q(r,t) на упругопластической границе $r = r_1(t)$, для области необратимого деформирования найдем

$$q(r,t) = \frac{c(t)}{2m} \left(\frac{1}{R_0^2} - \frac{1}{r^2} \right) + \frac{c_1(t)}{h} \left(\frac{1}{r_1^2(t)} - \frac{1}{r^2} \right) + \frac{2kt}{h} \ln \frac{r}{r_1(t)},$$

$$c_1(t) = \int c(t) dt.$$
(3.8)

Условие непрерывности производной $\frac{\partial q}{\partial r}$ на границе $r = r_1(t)$ и задание условия нагружения на границе $r = r_0$ позволяют вычислить функции c(t) и $c_1(t)$ и получить обыкновенное дифференциальное уравнение для $r_1(t)$:

$$c_{1}(t) = -ktr_{1}^{2}, \quad c(t) = -k\left(r_{1}^{2} + 2r_{1}r_{1}t\right)$$

$$r_{1} = \frac{\frac{kr_{1}^{2}}{2m}\left(\frac{1}{R_{0}^{2}} - \frac{1}{r_{0}^{2}}\right) + \frac{kt}{h}\left(1 - \frac{r_{1}^{2}}{r_{0}^{2}} - 2\ln\frac{r_{0}}{r_{1}}\right) + q(r_{0}, t)}{\frac{ktr_{1}}{m}\left(\frac{1}{r_{0}^{2}} - \frac{1}{R_{0}^{2}}\right)}$$
(3.9)

Развитие зоны вязкопластического течения $r_1(t) = \frac{r_1(t)}{R_0}$ со временем (t = at) при

значениях постоянных

$$\frac{ah}{m} = 0.004, \qquad \frac{r_0}{R_0} = 0.5, \qquad \frac{k}{m} = 0.00621$$
 (3.10)

показано на рис. 1. При увеличении угла поворота со временем (для численного решения был выбран линейный закон $q(r,t) = q_0(1 + at)$) функция $r_1(t)$ асимптотически приближается к некоторому значению, зависящему от свойств материала.

По найденной функции $r_1(t)$ определяются функция q(r,t), напряжения, полные и обратимые деформации, как в области обратимого деформирования, так и в области вязкопластического течения. Согласно формуле (1.2) разделения полных деформаций на обратимые и необратимые, компоненты пластических деформаций определяются зависимостями

$$p_{rj} = \frac{kt}{h} \left(1 - \frac{r_1^2}{r^2} \right) \qquad p_{jj} = 2e_{rj} p_{rj} , \qquad p_{rj} = 2d_{rr} \left(e_{rj} - d_{rj} \right)$$
(3.11)

4. Разгрузка и течение при повороте цилиндра в обратную сторону. При остановке внутреннего цилиндра ($q = q_1$) в некоторый момент времени $t = t_1$ граница области вязкопластического течения определяется значением $r_1 = r_1(t_1)$. Если далее угол поворота не увеличивать, то данное значение не изменяется. Неизменными при этом остаются и компоненты деформаций, а, следовательно, и напряжений. Если процесс деформирования закончен, то такие деформации и напряжения являются остаточными.

Рассмотрим, как будет изменяться напряженно-деформированное состояние, если, начиная с момента времени $t = t_1$ (или любого момента $t > t_1$), поворачивать внутренний цилиндр в обратную сторону.

До достижения углом поворота значения $q(t_2) = q_2$ в материале происходит только обратимое деформирование, а, начиная с момента времени $t = t_2$, в окрестности внутреннего жесткого цилиндра напряженное состояние выходит на поверхность нагружения

$$\boldsymbol{s}_{rj}\left(r_{0}\right) = k \tag{4.1}$$

и начинает свое развитие новая область пластического течения. Для нахождения начального параметра пластического течения q_2 необходимо решить задачу упругого равновесия с накопленными необратимыми деформациями. В области обратимого деформирования $r_1 \le r \le R_0$ компоненты деформаций и напряжений определяются зависимостями (2.3) и (2.4), а значение q(r) - выражением (3.2) при $t = t_2$. В области с накопленными необратимыми деформациями, учитывая, что до момента начала пластического течения компонента p_{rj} тензора пластических деформаций не изменяется ($e_{rj}^p = 0$) функцию, q(r) определим из условий $d_{rj} = e_{rj} + p_{rj}$ и непрерывности q(r) при $r = r_1$.

$$q(r) = \frac{2kt_1}{h} \left(\ln \frac{r}{r_1} + \frac{1}{2} \left(\frac{r_1^2}{r^2} - 1 \right) \right) + \frac{c(t_2)}{2m} \left(\frac{1}{R_0^2} - \frac{1}{r^2} \right)$$
(4.2)

Отметим, что хотя компоненты p_{rr} и p_{jj} изменяются, тензор необратимых деформаций при этом остается неизменным. Из равенств (4.1) и (4.2) определим угол q_2 .

$$q_{2} = \frac{2kt_{1}}{h} \left(\ln \frac{r_{0}}{r_{1}} + \frac{1}{2} \left(\frac{r_{1}^{2}}{r_{0}^{2}} - 1 \right) \right) + \frac{k}{2m} \left(\frac{r_{0}^{2}}{R_{0}^{2}} - 1 \right).$$
(4.3)

При дальнейшем изменении (уменьшении) угла q для определения компонент напряжений уравнения равновесия необходимо проинтегрировать в трех областях: в области обратимого деформирования $r_1 \le r \le R_0$, в области с неизменяющимся тензором необратимых деформаций $r_2(t) \le r \le r_1$ и в области пластического течения $r_0 \le r \le r_2(t)$, где $r_2(t)$ – граница данной области. В первых двух областях, как и ранее, найдем, что компоненты напряжений и функция q(r,t) определяются соотношениями (3.2) и (3.4) и (4.2), в которых функцию c(t) заменим ее текущем значением x(t). В области пластического течения $r_0 \le r \le r_2(t)$, воспользовавшись зависимостями (3.4) и условием пластичности (3.5), найдем

$$s_{rj} = k + he_{rj}^{p}, \qquad e_{rj}^{p} = \frac{1}{h} \left(\frac{x(t)}{r^{2}} - k \right)$$
 (4.4)

Из кинематических зависимостей (3.1) и условия непрерывности q(r,t) при $r = r_2(t)$, используя (4.4), получим, что в области пластического течения

$$q(r,t) = \frac{x(t)}{2m} \left(\frac{1}{R_0^2} - \frac{1}{r_1^2} \right) + \frac{kt_1}{h} \left(2\ln\frac{r_2(t)}{r_1} + \frac{r_1^2}{r_2^2(t)} - 1 \right) - \frac{1}{h} \left(2kt\ln\frac{r}{r_2(t)} + x_1(t) \left(\frac{1}{r^2} - \frac{1}{r_2^2(t)} \right) \right) \quad x_1(t) = \int x(t) dt.$$

$$(4.5)$$

Используя условие непрерывности функции $\frac{\partial q}{\partial r}$ при $r = r_2(t)$, определим неизвестные функции x(t), $x_1(t)$ и получим дифференциальное уравнение изменения для $r_2(t)$:

$$x_{1}(t) = k(t_{1} + t)r_{2}^{2} - kt_{1}r_{1}^{2}, \qquad x(t) = 2kr_{2}r_{2}(t_{1} + t) + kr_{2}^{2},$$

$$q(r_{0}, t) = \frac{2k(t_{1} + t)r_{2}r_{2} + kr_{2}^{2}}{2m} \left(\frac{1}{R_{0}^{2}} - \frac{1}{r_{0}^{2}}\right) + \frac{kt_{1}}{h} \left(2\ln\frac{r_{2}}{r_{1}} + \frac{r_{1}^{2}}{r_{2}^{2}} - 1\right) -$$

$$-\frac{1}{h} \left[2kt\ln\frac{r_{0}}{r_{2}} + \left(k(t_{1} + t)r_{2}^{2} - kt_{1}r_{1}^{2}\right)\left(\frac{1}{r_{0}^{2}} - \frac{1}{r_{2}^{2}}\right)\right].$$
(4.6)

Развитие области вязкопластического течения $r_2(t)$ при значениях постоянных (3.10), $t_1 = 0.1$ и изменении $q(r_0, t)$ по закону $q(r_0, t) = q_2(1 - at)$ показано на рис. 2. Так же, как и

на рис. 1. функция $r_2(t)$ имеет горизонтальную асимптоту. Существенно, что область течения при этом увеличивается. По найденной функции $r_2(t)$ (x(t)) напряжения во всей области деформирования определяются зависимостями

$$\boldsymbol{S}_{rr} = \boldsymbol{S}_{zz} = \frac{x^{2}(t)}{4m} \left(\frac{1}{r_{0}^{4}} - \frac{1}{r^{4}} \right) + \boldsymbol{S}_{0},$$
$$\boldsymbol{S}_{jj} = \frac{x^{2}(t)}{4m} \left(\frac{1}{r_{0}^{4}} + \frac{3}{r^{4}} \right) + \boldsymbol{S}_{0}, \qquad \boldsymbol{S}_{rj} = \frac{x(t)}{r^{2}}.$$

Работа выполнена при финансовой поддержке РФФИ (проект № 05-01-00537-а), фонда содействия отечественной науки и гранта Президента МК.1774.2005.1

ЛИТЕРАТУРА

1. Бахшиян, Ф. А. Вращение жесткого цилиндра в вязкопластичной среде / Ф. А. Бахшиян // ПММ. – 1948. – 12. Вып. 6. – С. 650–661.

2. *Буренин, А. А.* Об одной простой модели для упругопластической среды при конечных деформациях / А. А. Буренин, Г. И. Быковцев, Л. В. Ковтанюк // ДАН. – 1996. – Т. 347, № 2. – С. 199–201.

3. *Быковцев, Г. И.* О вязкопластическом течении круглых пластин и оболочек / Г. И. Быковцев, Т. Д. Семыкина // Изв. АН СССР. Механика и машиностроение. – 1964. – № 4. – С. 68–76.

4. Знаменский, В. А. Об уравнениях вязкопластического тела при кусочно-линейных потенциалах / В. А. Знаменский, Д. Д. Ивлев // Изв. АН СССР. ОТН. Механика и машиностроение. – 1963. – № 6. – С. 114–118.

5. *Ковтанюк, Л. В.* О теории больших упругопластических деформаций материалов при учете температурных и реологических эффектов / Л. В. Ковтанюк, А. В. Шитиков // Вестник ДВО РАН. 2006. – №4. – С. 87–93.

6. *Огибалов, П. М.* Нестационарные движения вязкопластичных сред / П. М. Огибалов, А. Х. Мирзаджанзаде. – М. : Изд-во МГУ, 1970. – 415 с.

7. Сафрончик, А. И. Вращение цилиндра с переменной скоростью в вязкопластичной среде / А. И. Сафрончик // ПММ. – 1959. – 23. – Вып. 6. – С. 998–1014.