ВЕСТНИК ЧГПУ им. И. Я. ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ № 1 • 2007

УДК 539.3

Сергеева А. М.

МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА

(Институт машиноведения и металлургии ДВО РАН)

Применяя теорию малых упругопластических деформаций и апробированный численный метод, моделируется процесс зарождения и развития трещины в ледяном покрове, нагруженном внешним атмосферным давлением, собственным весом и находящимся над разряженным ограниченным пространством.

Ключевые слова: разрушение ледяного покрова, напряжения, деформации.

Введение. Моделируется процесс разрушения льда как результат образования и развития в нем трещин. В основу построения модели положен новый способ разрушения ледяного покрова, защищенный патентом РФ [9]. Идея в том, что подо льдом создается разряжение и лед будет разрушаться под действием атмосферного давления и собственного веса. Под лед помещается контейнер, в котором имеются две подвижные створки, свободно перемещающиеся в направлении, перпендикулярном движению судна. В контейнере имеются две боковые стенки и днище, которые при раздвижении створок мешают заполнению контейнера водой. С торцевых сторон контейнера нет препятствий для отжима воды створками. На рис. 1 представлена схема получения разряжения подо льдом рассматриваемым способом. Важно, что скорость раздвижения створок v должна быть такой, что при заданных параметрах контейнера объем поступившей воды не должен быть больше 2/3 от объема контейнера. Аналитическая формула для скорости раздвижения створок получена в работе [10, 24].

Рис. 1. Схема получения разряжения под ледяным покровом: 1 – подвижные створки; 2 – боковые стенки; 3 – днище; 4 – внешние стороны контейнера

Установлено, что значения напряжений растяжения или сдвига, при которых происходит полное разрушение ледяного покрова, должно в несколько раз превышать предел прочности льда, установленный для образца. Если же напряжение незначительно превышает предел прочности, то образуется трещина, при этом лед переходит в новое устойчивое состояние и выдерживает внешнюю нагрузку. В работе определены такие параметры контейнера, при которых происходит полное разрушение ледяного покрова способом [9].

Постановка и решение задачи. Решается пространственная задача о разрушении ледяного покрова под действием атмосферного давления и силы тяжести самого льда. При построении модели учитывалось, что задача симметричная, поэтому достаточно исследовать четвертую часть области деформирования (рис. 2, а). Пусть лед (рис. 2, а) опирается на коробку контейнера и упругое основание (воду) с внешней стороны контейнера. Внутри контейнера лед провисает под действием внешнего атмосферного давления и собственного веса. Так как нагрузка кратковременная, то деформируемую среду можно считать упругой и изотропной, а упругие перемещения малыми. Применяя уравнения теории упругости для малых деформаций, запишем систему дифференциальных уравнений в декартовой системе координат

$$S_{ii,j} + F_i = 0; i, j = 1,2,3;$$
 $F_2 = F_3 = 0.$ (1)

$$s_{ij} - sd_{ij} = 2Ge_{ij}^*$$
; i, j=1,2,3, $e_{ij}^* = e_{ij} - 1/3ed_{ij}$; $e = e_{ii}$,

$$s = 1/3s_{ii}; \quad e_{ij} = 1/2(u_{i,j} + u_{j,i}); \quad d_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (2)

$$e_{ii} = 3ks . (3)$$

Уравнение теплопроводности для стационарного случая:

$$\frac{\partial}{\partial x_i} \left(I \frac{\partial q}{\partial x_i} \right) = 0. \tag{4}$$

В (1)–(4) G = G(q) – модуль сдвига; q – температура; k = k(q) – коэффициент объемного сжатия; s_{ij} – компоненты тензора напряжений; e_{ij} – компоненты тензора деформаций; F_i – проекция удельной объемной силы по осям x_i ; u_i – проекции перемещений по координатным осям x_i , i = 1,2,3; I – коэффициент теплопроводности; уравнения (1–4) записаны с учетом суммирования по повторяющимся индексам.

Будем рассматривать ледяной покров как пластину конечной толщины, поэтому уравнение теплопроводности примет вид:

$$q = -\frac{I_0}{a} + \sqrt{\left(\frac{I_0}{a}\right)^2 + \frac{x_1}{h} \left(\frac{2q_1 I_0}{a} + q_1^2\right)}$$
 (5)

По данным работы [2] a = -0.0159, $I_0 = 2.22 \, Bm/(MK)$.

Граничные условия задачи

$$\begin{aligned}
\mathbf{S}_{11}\big|_{S_{8}} &= -\mathbf{S}_{0}; \ (\mathbf{S}_{12} = \mathbf{S}_{13})\big|_{S_{8}} = 0; \ (\mathbf{S}_{11} = \mathbf{S}_{12} = \mathbf{S}_{13})\big|_{S_{1}} = 0; \\
(\mathbf{S}_{12} = \mathbf{S}_{13})\big|_{S_{3}} &= 0; \ \mathbf{S}_{21}\big|_{S_{4}} = 0; \ \mathbf{S}_{23}\big|_{S_{i}} = 0; \ i = 4,6; \ (\mathbf{S}_{12} = \mathbf{S}_{13})\big|_{S_{2}} = 0; \\
\mathbf{S}_{31}\big|_{S_{5}} &= 0; \ \mathbf{S}_{32}\big|_{S_{i}} = 0; \ i = 5,7; \ \mathbf{S}_{11}\big|_{S_{3}} = -q_{1}; \ \mathbf{S}_{11}\big|_{S_{2}} = \mathbf{S}_{*}; \\
u_{2}\big|_{S_{i}} &= 0; \ i = 4,6; \ u_{3}\big|_{S_{i}} = 0; \ i = 5,7,
\end{aligned}$$
(6)

где $q_1 = \mathbf{s}_0 + \mathbf{g} h_*$; h_* – глубина погружения льда.

Рис. 2. Схема к расчету деформации ледяной пластины:

а - пространственная схема;

6 – в плоскости x_1x_2 ($x_3=0$);

в - в плоскости x₂x₃ (x₁=0)

Важно, что контейнер, наполненный водой, имеет положительную плавучесть. Поэтому при раздвижении створок контейнера появляется сила, направленная снизу на лед от бортов контейнера, – выталкивающая сила, равная $P = b \cdot l \cdot h_1 \cdot g$, где h_1 – высота образовавшейся в контейнере полости ($h_1 < h$, так как в процессе раздвижения щек внутрь затекает вода); g – удельный вес воды; S_0 – атмосферное давление.

Таким образом, напряжение на бортах контейнера (
$$S_2$$
), (рис. 2) будет
$$\mathbf{S}_* = -P/\big[\big(l+D\big)\cdot D + b\cdot D\big] = \mathbf{S}_{11}\big|_{S_2}. \tag{7}$$

Таким образом под ледяным покровом реализуется разряженное пространство, способствующее погружению деформированного льда вместе с контейнером в воду. Моделируя связь ледовой подушки с внешней недеформируемой основой, на внешних гранях S_6 , S_7 (рис. 2) принимается условие закрепления льда, не дающее ему перемещаться в воду.

Моделируемая связь определяется уравнениями

$$\mathbf{s}_{21}|_{S_6} = -\mathbf{y}_6 \mathbf{t}_S \frac{\mathbf{v}_{c\kappa}}{|\mathbf{v}|}; \ \mathbf{s}_{31}|_{S_7} = -\mathbf{y}_7 \mathbf{t}_S \frac{\mathbf{v}_{c\kappa}}{|\mathbf{v}|}.$$
 (8)

Здесь y_6 , y_7 – коэффициенты ($y_6 = y_7 = 1000$); $v_{c\kappa}$ – скорость скольжения ледяной подушки относительно основы; $v_{c\kappa} = v_1\big|_{S_3} - v_1^*$, v_1^* – скорость перемещения основы. В нашем случае $v_1^* = 0$; |v| – нормирующая скорость; t_s – условный предел текучести льда. По расчетам, при значениях y_i (i = 6, 7) перемещения u_I вблизи S_6 , S_7 составили 0.0007 mm, а касательные напряжения на поверхностях S_6 , S_7 не превышали 0.02 $M\Pi a$.

При построении численной схемы решения используется численный метод [4]. Для этого область деформирования разбивается на ортогональные элементы конечных размеров и для каждого элемента записывается в разностном виде система (1–3), которая решается по разработанному алгоритму с учетом смешанных граничных условий (6). В результате решения имеем поля напряжений S_{ij} и перемещений u_i по граням каждого элемента.

В соответствии с работой [8] $E = (87.6 - 0.21q - 0.0017q^2) \cdot 10^2$ (МПа), коэффициент Пуассона $\mathbf{n} = 0.5 + 0.003 \cdot \mathbf{q}$ (0 > -40° C), коэффициент объемного сжатия (k) $k = (1-2\mathbf{n})/E$, модуль сдвига (G) $G = E/2(1+\mathbf{n})$.

Значение q_1 в формуле (5) принималось $q_1 = -30^{\circ}$ С.

Алгоритм решения рассматриваемой задачи будет иметь вид:

- 1. Исследуемая область деформирования разбивается на элементы ортогональной формы (в нашем случае на элементы прямоугольной формы). Рассчитывается матрица дуг элементов.
 - 2. Задаются граничные условия.
 - 3. По формуле (5) насчитывается поле температур по каждому элементу.
- 4. Насчитываются по формулам значения $(G)_n$ и $(k)_n$ по каждому элементу (п номер элемента).
- 5. Насчитывается матрица коэффициентов и свободных членов новой эквивалентной системы в соответствии с вышеизложенной последовательностью вычислений.
 - 6. Решается система линейных уравнений по стандартной программе.
 - 7. По каждому элементу (его граням) (i,j) насчитываются S_{ii} , u_i (i,j=1,2,3).
- 8. Отыскиваются растягивающие напряжения \mathbf{S}_{ii} (i=2,3), превышающие 1МПа . Так как предполагается, что в данном месте образовалась трещина, то следует изменение граничных условий: на грани элемента, где $\mathbf{S}_{ii} \geq 1$ МПа (i=2,3), устанавливается $\mathbf{S}_{ii} = 0$. Осуществляется операция 5. В случае выполнения условий по прочности следует операция 9.
 - 9. Окончание расчета.

Результаты исследования. В качестве критерия разрушения примем прочность морского льда на сжатие от 2 до 3 МПа, прочность — на растяжение от 0.5 до 1 МПа. В качестве критических значений определим максимальные значения. В работе [10, 26] установлено, что наиболее оптимальной является скорость раздвижения створок 0,5 м/с. Поэтому все рассматриваемые результаты были получены при v = 0.5 м/с.

Принимая в качестве критерия разрушения ледяного покрова $s_{np} = 1M\Pi a$, установлено, что по мере раздвижения створок в толще льда образуется трещина. Эволюция развития трещины рассмотрена в [5, 102] и схематично представлена на рис. 3, процесс образования и развития которой происходит последовательно в порядке нумерации 1, 2, 3, 4, 5 по растягивающим напряжениям s_{33} .

Установлено, что, независимо от толщины льда, при заданной ширине контейнера трещина растет в высоту только до половины толщины льда и при дальнейшем раздвижении створок до критического положения не изменяется. Под критической длиной контейнера понимается максимальная длина 2l, превышение которой сразу же приведет к «затоплению» контейнера. Эту критическую длину будем называть номинальной длиной контейнера. На рис. 4 показано, как меняется отношение номинальной длины контейнера к длине образовавшейся трещины при изменении толщины льда. Важно, что при толщине льда менее $1,5\,$ м. трещина распространяется и за пределами контейнера, причем ширина трещины колеблется от $0,57\,$ до $0,972\,$ мм.

Puc. 4. Отношение номинальной длины контейнера к длине образовавшейся трещины при различной толщине льда

Как следует из расчетов, при критерии разрушения $s_{np}=1$ МПа нет полного разрушения льда. Происходит только начальное разрушение и ледяной покров переходит в другое состояние по сплошности, выдерживающее внешнее воздействие. Для того чтобы процесс разрушения продолжался, необходимо увеличивать ширину контейнера. Увеличение ширины контейнера, в свою очередь, повлечет увеличение номинальной длины. Параметры контейнера, при которых происходит полное разрушение льда, представлены в таблице 1.

Таблица 1 Параметры контейнера, при которых лед будет полностью разрушаться

Толщина	Глубина	Номинальная	Ширина
льда (м)	контейнера (м)	длина контейнера (м)	контейнера (м)
3	1,5	44	18
2.5	1.5	30	15.5
2	1.5	23.4	12
1,5	1.5	13.8	9.94
1	1.5	8.8	6
0.5	1.5	5	3.9

На рис. 5 представлена эволюция развития трещин в ледяном покрове толщиной 1 м. Разрушение льда происходит поэтапно и соответствует последовательности (1, 2, 3, 4) нумерации областей на рисунке.

Рис. 5. Процесс развития трещин до полного разрушения льда толщиной h_0 = 1 метр

Также получена формула, позволяющая найти зависимость величины максимального расхождения створок контейнера от заданных геометрических параметров его поперечного сечения и заданной величины растягивающего напряжения, при котором начнется разрушение льда:

$$l = 6.1419 \cdot h_0 \cdot e^{-1.7045h_0/b} \cdot e^{0.4219(\frac{v}{v_x})} \cdot \left(\frac{s}{s_x}\right)^{0.5\ln(h/h_x)},$$

где l – половина длины контейнера (м); b – половина ширины контейнера (м); h – глубина контейнера (м); h_0 – толщина льда (м); v – скорость раздвижения створок (м/с); s – принятый критерий прочности льда (МПа); v_x – нормирующая скорость (1м/с); s_x – нормирующее напряжение (1МПа). Причем $h^3O,5h_0$; $v^3O,16$ м/с.

ЛИТЕРАТУРА

- 1. *Бердянников, В. П.* Изучение модуля упругости льда / В. П. Бердянников // Труды ГПИ. 1948. Вып. 7(61). С. 13–23.
- 2. *Богородский, В. В.* Разрушение льда. Методы, технические средства / В. В. Богородский, В. П. Гаврило, О. А. Недошивин. Л. : Гидрометеоиздат, 1983.
- 3. *Богородский, В. В.* Физические свойства. Современные методы гляциологии / В. В. Богородский, В. П. Гаврило. Л.: Гидрометеоиздат, 1980.
- 4. *Одиноков*, *В. И.* Численное исследование процесса деформации материалов бескоординатным методом / В. И. Одиноков. Владивосток : Дальнаука, 1995. 168 с.
- 5. *Одиноков*, *В. И.* Разрушение льда под действием гидростатического давления на подведенном плавающем контейнере с учетом его заполнения водой / В. И. Одиноков, А. М. Сергеева // Вестник УГТУ-УПИ. 2006. № 11(82). С. 100–104.
- 6. Одиноков, В. И. Разрушение льда под действием гидростатического давления на подведенном плавающем контейнере с учетом его заполнения водой / В. И. Одиноков, А. М. Сергеева // Механика микронеоднородных материалов и разрушение: тезисы докладов IV Всероссийского семинара (Екатеринбург, 23–24 марта 2006 г.). Екатеринбург: Изд-во УГТУ-УПИ, 2006. С. 43.
- 7. *Одиноков*, *В. И.* Математическое моделирование одного нового процесса разрушения ледяного покрова / В. И. Одиноков, А. М. Сергеева // Прикладная механика и техническая физика. 2006. № 2. С. 139–146.
- 8. *Одиноков*, *В. И.* Моделирование процесса разрушения ледяного покрова под действием гидростатического давления на стационарном контейнере / В. И. Одиноков, А. М. Сергеева // IX Всероссийский съезд по теоретической и прикладной механике (Нижний Новгород, 22–28 августа 2006 г.) : аннотация докладов. Н. Новгород : Нижегородский государственный университет, 2006. Т. 1. С. 162.
- 9. *Патент* РФ № 2220878. Способ разрушения ледяного покрова / В. И. Одиноков, В. М. Козин. Бюл. № 1. Опубл. 10.01.04 г.
- 10. Полярус (Сергеева), А. М. Об одном способе разрушения ледяного покрова / А. М. Полярус (Сергеева), Д. Ю. Романов // Проблемы механики сплошных сред и смежные вопросы технологии машиностроения: сб. докладов второй конференции (Владивосток, 31 августа 6 сентября 2003 г.). Комсомольск-на-Амуре: ИМиМ ДВО РАН, 2003. С. 23–28.