А. А. Буренин, Л. В. Ковтанюк, А. С. Устинова

ВИСКОЗИМЕТРИЧЕСКОЕ ТЕЧЕНИЕ УПРУГОВЯЗКОПЛАСТИЧЕСКОЙ СРЕДЫ, ОСЛАБЛЕННОЙ СЛОЕМ БОЛЕЕ ПОДАТЛИВОГО МАТЕРИАЛА

Институт автоматики и процессов управления ДВО РАН

Аннотация. Рассматривается деформирование упруговязкопластической среды между двумя жесткими коаксиальными цилиндрами при повороте одного из них. Среда ослаблена слоем более податливого материала. Решение строится в рамках модели больших упруговязкопластических деформаций. Рассмотрены обратимое деформирование, вязкопластическое течение, случай остановки цилиндра и деформирование при повороте в обратном направлении. Получены законы движения границ развивающихся областей вязкопластического течения при различных скоростях поворота поверхностей.

Ключевые слова: упругость, вязкопластичность, большие деформации, остаточные напряжения.

УДК: 539.374

Вязкопластические течения в модели Шведова-Бингама изучались достаточно подробно, в том числе были получены точные решения задач о прямолинейных [6,10] и вискозиметрических течениях [1,11,13]. Следует считать достаточно разработанным соответствующий математический и алгоритмический аппарат для расчетов течений в рамках такой модели [9,12]. В настоящее время наметился определенный интерес к подобным течениям [3-5], когда материал застойных зон и жестких ядер полагается способным допускать обратимые деформации. Настоящей публикацией представляется еще одно решение в рамках теории больших упруговязкопластических деформаций задачи о вискозиметрических течениях среды, ослабленной слоем более податливого материала. Исследуются вопросы об условиях и месте зарождения течения, развитии течения с определением закономерностей продвижения упругопластических границ, о возникновении новых таких границ при торможении течения и вычислении остаточных напряжений.

1. Основные модельные соотношения. Задача решается в рамках модели больших упругопластических деформаций, предложенной в [2] и обобщенной на случай учета вязких свойств материала на стадии пластического течения [8]. В прямоугольной декартовой системе координат кинематика среды определяется зависимостями

Поступила 31.05.2010

$$d_{ij} = e_{ij} + p_{ij} - \frac{1}{2} e_{ik} e_{kj} - e_{ik} p_{kj} - p_{ik} e_{kj} + e_{ik} p_{ks} e_{sj},$$

$$\frac{De_{ij}}{Dt} = \varepsilon_{ij} - \varepsilon_{ij}^p - \frac{1}{2} ((\varepsilon_{ik} - \varepsilon_{ik}^p + z_{ik}) e_{kj} + e_{ik} (\varepsilon_{kj} - \varepsilon_{kj}^p - z_{kj})),$$

$$\frac{Dp_{ij}}{dt} = \varepsilon_{ij}^p - p_{ik} \varepsilon_{kj}^p - \varepsilon_{ik}^p p_{kj}, \qquad \frac{Dn_{ij}}{Dt} = \frac{dn_{ij}}{dt} - r_{ik} n_{kj} + n_{ik} r_{kj},$$

$$\varepsilon_{ij} = \frac{1}{2} (v_{i,j} + v_{j,i}), \qquad v_i = \frac{du_i}{dt} = \frac{\partial u_i}{\partial t} + u_{i,j} v_j, \qquad u_{i,j} = \frac{\partial u_i}{\partial x_j},$$

$$r_{ij} = \frac{1}{2} (v_{i,j} - v_{j,i}) + z_{ij} (\varepsilon_{sk}, e_{sk}).$$
(1)

В соотношениях (1) d_{ij} — компоненты тензора деформаций Альманси; e_{ij} , p_{ij} — их обратимые и необратимые составляющие; u_i , v_i — компоненты векторов перемещений и скоростей точек среды; $\frac{D}{Dt}$ — объективная производная тензоров по времени; ε_{ij}^p (источник в уравнении переноса для тензора необратимых деформаций) — компоненты тензора скоростей пластических деформаций. Наличие нелинейной составляющей z_{ij} тензора вращений r_{ij} , которая выписана полностью в [2,8], связано с выполнением требования неизменности тензора пластических деформаций p_{ij} в процессах разгрузки.

Материал считаем несжимаемым и тогда, следуя [2,8], получаем

$$\begin{aligned}
\sigma_{ij} &= -p\delta_{ij} + \frac{\partial W}{\partial d_{ik}} (\delta_{kj} - 2d_{kj}) & \text{при} \quad p_{ij} \equiv 0, \\
\sigma_{ij} &= -p_1 \delta_{ij} + \frac{\partial W}{\partial e_{ik}} (\delta_{kj} - e_{kj}) & \text{при} \quad p_{ij} \neq 0, \\
W &= -2\mu J_1 - \mu J_2 + b J_1^2 + (b - \mu) J_1 J_2 - \chi J_1^3 + \dots, \\
J_k &= \begin{cases} L_k, & \text{при} & p_{ij} \equiv 0 \\ I_k, & \text{при} & p_{ij} \neq 0, \end{cases} \quad L_1 = d_{kk}, \quad L_2 = d_{ik} d_{ki}, \\
I_1 &= e_{kk} - \frac{1}{2} e_{sk} e_{ks}, \qquad I_2 = e_{st} e_{ts} - e_{sk} e_{kt} e_{ts} + \frac{1}{4} e_{sk} e_{kt} e_{tn} e_{ns}, \end{aligned}$$
(2)

В зависимостях (2) σ_{ij} — компоненты тензора напряжений, p, p_1 — добавочные гидростатические давления, W — упругий потенциал, μ — модуль сдвига, b, χ — постоянные материала.

В качестве пластического потенциала используется функция нагружения Треска [7]

$$max|\sigma_i - \sigma_j| = 2k + 2\eta max|\varepsilon_k^p|,\tag{3}$$

где k — предел текучести; η — коэффициент вязкости; σ_i , ε_k^p — главные значения тензоров напряжений и скоростей пластических деформаций.

Связь скоростей необратимых деформаций с напряжениями устанавливается ассоциированным законом пластического течения

$$\varepsilon_{ij}^p = \lambda \frac{\partial f}{\partial \sigma_{ij}}, \quad f(\sigma_{ij}, \varepsilon_{ij}^p) = k, \qquad \lambda > 0.$$
 (4)

2. Упругое деформирование. Считаем, что упруговязкопластический материал заполняет область $r_0 \leq r \leq R$, расположенную между двумя жесткими цилиндрическими поверхностями. Его механические свойства задаются параметрами μ_1 , b_1 , χ_1 , k_1 , η_1 в отличие от свойств материала слоя $r_0 < r_1 \leq r \leq r_2 < R$, аналогичные механические параметры которого будем обозначать μ_2 , b_2 , χ_2 , k_2 , η_2 ($k_2 < k_1$). Рассмотрим вначале случай, когда деформирование осуществляется за счет поворота внутреннего цилиндра радиусом $r = r_0$, в то время как внешней цилиндр радиусом r = R, остается неподвижным. Считается, что

на граничных поверхностях выполняются условия прилипания, тогда граничное условие на внешней поверхности имеет вид:

$$u_r = u_\varphi = 0 \qquad \text{при} \qquad r = R. \tag{1}$$

Компоненты вектора перемещений при движении точек среды по окружностям определяются зависимостями

$$u_r = r(1 - \cos\theta(r, t)), \qquad u_\varphi = r\sin\theta(r, t),$$
(2)

здесь $\theta(r,t)$ — центральный угол закручивания.

При повороте внутреннего цилиндра сначала происходит только упругое деформирование. В зависимости от свойств материалов и геометрии тела пластическое течение может начаться как в окрестности внутренней жесткой стенки $r = r_0$, так и в окрестности внутренней поверхности слоя $r = r_1$. Условием возникновения пластического течения на поверхности $r = r_1$ является неравенство $\sqrt{\frac{k_1}{k_2}} > \frac{r_1}{r_0}$. В противном случае пластическое течение начнется на поверхности $r = r_0$. Пусть геометрические размеры обеспечивают выполнение данного неравенства. Рассмотрим напряженно-деформируемое состояние, предшествующее началу пластического течения.

Отличными от нуля компонентами тензора деформаций Альманси являются следующие:

$$d_{rr} = -\frac{1}{2}g^2, \qquad d_{r\varphi} = \frac{1}{2}g, \qquad g = r\frac{\partial\theta}{\partial r}.$$
 (3)

Из зависимостей (2) для компонент напряжений с точностью до слагаемых второго порядка малости по деформациям следуют соотношения

$$\sigma_{rr} = \sigma_{zz} = -(p+2\mu) - \frac{1}{2}(b+\mu)g^2 = -s,$$

$$\sigma_{\varphi\varphi} = -s + \mu g^2, \qquad \sigma_{r\varphi} = \mu g.$$
(4)

Интегрируя уравнения равновесия

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\varphi\varphi}}{r} = 0, \qquad \frac{\partial \sigma_{r\varphi}}{\partial r} + 2\frac{\sigma_{r\varphi}}{r} = 0$$
(5)

и используя условие прилипания (1) и условие непрерывности перемещений при $r = r_1$ и $r = r_2$, найдем

в области $r_2 \leqslant r \leqslant R$:

$$\theta = A(c), \qquad A(c) = \frac{c}{2\mu_1} \left(\frac{1}{R^2} - \frac{1}{r^2}\right);$$

в слое $r_1 \leqslant r \leqslant r_2$:

$$\theta = A_1(c), \qquad A_1(c) = \frac{c}{2\mu_1} \left(\frac{1}{R^2} - \frac{1}{r_2^2} \right) + \frac{c}{2\mu_2} \left(\frac{1}{r_2^2} - \frac{1}{r^2} \right); \tag{6}$$

в области $r_0 \leqslant r \leqslant r_1$:

$$\theta = A_2(c), \qquad A_2(c) = \frac{c}{2\mu_1} \left(\frac{1}{R^2} - \frac{1}{r_2^2} + \frac{1}{r_1^2} - \frac{1}{r^2} \right) + \frac{c}{2\mu_2} \left(\frac{1}{r_2^2} - \frac{1}{r_1^2} \right),$$

здесь с — постоянная интегрирования.

При достижении некоторого значения $\theta_0 = \theta(r_0, t_0)$ в окрестности внутренней поверхности слоя $r = r_1$ начинается пластическое течение. Из условия пластичности (3), записанного в форме

$$\sigma_{r\varphi}\Big|_{r=r_1} = -k_2,$$

найдем угол поворота θ_0 внутреннего цилиндра, при котором начинается пластическое течение

$$\theta_0 = \frac{k_2}{2\mu_1} \left(\frac{r_1^2}{r_2^2} - \frac{r_1^2}{R^2} + \frac{r_1^2}{r_0^2} - 1 \right) + \frac{k_2}{2\mu_2} \left(1 - \frac{r_1^2}{r_2^2} \right).$$
(7)

3. Вязкопластическое течение. Начиная с момента времени $t = t_0 = 0$, в окрестности внутренней поверхности слоя развивается область вязкопластического течения $r_1 \leq r \leq x_1(t)$, $x_1(t) -$ движущаяся граница этой области. В областях $r_0 \leq r \leq r_1$, $x_1(t) \leq r \leq r_2$, $r_2 \leq r \leq R$ по-прежнему происходит упругое деформирование.

Согласно зависимостям (1) для компонент вектора скорости и тензора скоростей деформаций, справедливы кинематические соотношения

$$\upsilon_{\varphi} = r \frac{\partial \theta}{\partial t}, \quad \varepsilon_{r\varphi} = \frac{1}{2} \left(\frac{\partial \upsilon_{\varphi}}{\partial r} - \frac{\upsilon_{\varphi}}{r} \right) = \frac{\partial d_{r\varphi}}{\partial t} = \frac{1}{2} r \frac{\partial^{2} \theta}{\partial r \partial t}, \\
\varepsilon_{r\varphi} = \varepsilon_{r\varphi}^{e} + \varepsilon_{r\varphi}^{p} = \frac{\partial e_{r\varphi}}{\partial t} + \frac{\partial p_{r\varphi}}{\partial t}, \quad (1) \\
\varepsilon_{rr}^{p} = \frac{\partial p_{rr}}{\partial t} + 2p_{r\varphi} \left(r_{\varphi r} + \varepsilon_{r\varphi}^{p} \right), \quad \varepsilon_{\varphi\varphi}^{p} = \frac{\partial p_{\varphi\varphi}}{\partial t} + 2p_{r\varphi} \left(r_{r\varphi} + \varepsilon_{r\varphi}^{p} \right), \\
\varepsilon_{rr}^{p} = -\varepsilon_{\varphi\varphi}^{p} = -2\varepsilon_{r\varphi}^{p} e_{r\varphi}.$$

Рассчитаем параметры напряженно-деформированного состояния в некоторый момент времени $t = t_1 \ge t_0$.

Интегрируя уравнения равновесия (квазистатическое приближение) в областях упругого деформирования, с использованием (1) найдем:

$$\sigma_{r\varphi} = \frac{c_1}{r^2}, \qquad v_{\varphi} = 0, \qquad c_1 = c(t_1),$$

$$\theta = A(c_1) \quad \text{в области} \quad r_2 \leqslant r \leqslant R,$$

$$\theta = A_1(c_1) \quad \text{в области} \quad x_1(t) \leqslant r \leqslant r_2.$$
(2)

Из второго соотношения в (2) для компонент напряжений в области пластического течения имеем

$$\sigma_{rr} = \sigma_{zz} - (p_1 + 2\mu) - \frac{1}{2}(b + \mu)e_{r\varphi}^2 = -s_1(t),$$

$$\sigma_{\varphi\varphi} = -s_1(t) + 4\mu e_{r\varphi}^2, \qquad \sigma_{r\varphi} = 2\mu e_{r\varphi}.$$
(3)

В то же время интегрированием уравнений равновесия можно получить

$$\sigma_{r\varphi} = \frac{m(t_1)}{r^2}, \qquad e_{r\varphi} = \frac{m(t_1)}{2\mu r^2}.$$
(4)

Из условий непрерывности компонент напряжений следует, что

$$m(t_1) = c_1, \qquad s(t_1) = s_1(t_1).$$

Согласно условию пластичности (3) и ассоциированному закону пластического течения (4), получаем

$$\sigma_{r\varphi} = -k + \eta \varepsilon_{r\varphi}^p, \quad \lambda = -\varepsilon_{r\varphi}^p / (k - \eta \varepsilon_{r\varphi}^p).$$
(5)

Используя (4) и (5), можно вычислить скорость пластической деформации в области $r_1\leqslant r\leqslant x_1(t)$

$$\varepsilon_{r\varphi}^p = \frac{1}{\eta_2} \left(\frac{c_1}{r^2} + k_2 \right).$$

С учетом кинематических зависимостей (1) и условия непрерывности перемещений и деформаций на упругопластической границе $r = x_1$, в области необратимого деформирования найдем

$$\theta = tF(c_1, r, x_1) + A_1(c_1), \qquad v_{\varphi} = rF(c_1, r, x_1), \qquad c_1 = -k_2 x_1^2,$$

$$F(c_1, r, x_1) = \frac{2}{\eta_2} \left(k_2 \ln \frac{r}{x_1} + \frac{c_1}{2} \left(\frac{1}{x_1^2} - \frac{1}{r^2} \right) \right). \tag{6}$$

Используя условие непрерывности функции θ , в области $r_0 \leqslant r \leqslant r_1$ получим

$$\theta = tF(c_1, r_1, x_1) + A_2(c_1), \qquad v_{\varphi} = rF(c_1, r_1, x_1).$$
(7)

Задавая закон нагружения на внутренней поверхности $r = r_0$, получим уравнение для определения упругопластической границы x_1 .

При дальнейшем повороте внутреннего цилиндра в момент времени $t = t_1'$ напряженное состояние в окрестности жесткой стенки $r = r_0$ выйдет на поверхность нагружения $\sigma_{r\varphi}\Big|_{r=r_0}$ $-k_1$ и начнет свое развитие еще одна область вязкопластического течения $r_0 \leqslant r \leqslant x_2(t)$. С этого момента времени уравнения равновесия необходимо проинтегрировать в пяти областях. В первых четырех областях имеют место те же соотношения, что и ранее. В области $r_0 \leqslant r \leqslant$ $x_2(t)$, используя условие непрерывности функции θ и ее производных, найдем

$$\theta = tF(c_1, r_1, x_1) + (t - t_1')F_1(c_1, r, x_2) + A_2(c_1),$$

$$\upsilon_{\varphi} = rF(c_1, r_1, x_1) + rF_1(c_1, r, x_2), \qquad c_1 = -k_1 x_2^2 = -k_2 x_1^2,$$

$$F_1(c_1, r, x_2) = \frac{2}{\eta_1} \left(k_1 \ln \frac{r}{x_2} + \frac{c_1}{2} \left(\frac{1}{x_2^2} - \frac{1}{r^2} \right) \right).$$
(8)

При линейном законе движения внутреннего жесткого цилиндра $\theta(r_0, t) = \theta_0(1 + \alpha t)$ упругопластические границы $x_1(t)$ и $x_2(t)$ определяются из решения системы уравнений

$$\theta_0(1+\alpha t) = tF(c_1, r_1, x_1) + (t-t_1')F_1(c_1, r_0, x_2) - \frac{k_1 x_2^2}{2\mu_1} \left(\frac{1}{R^2} - \frac{1}{r_2^2} + \frac{1}{r_1^2} - \frac{1}{r_0^2}\right) - \frac{k_1 x_2^2}{2\mu_2} \left(\frac{1}{r_2^2} - \frac{1}{r_1^2}\right), \quad k_1 x_2^2 = k_2 x_1^2.$$
⁽⁹⁾

в каждый момент времени $t = t_2 > t'_1$. В этом случае функции $x_1(t)$ и $x_2(t)$ выходят на асимптоты. Таким образом, вязкопластическое течение продолжается в областях $r_0 \leqslant r \leqslant x_2$ и $r_1 \leqslant r \leqslant x_1$ и дальше не развивается. Характерный график изменения границы области развивающегося вязкопластического течения представлен на рис.1 (поверхность $x_1(\tau)$, $\tau = \alpha t$), на рис.2. показано распределение угла поворота в зависимости от радиуса. Расчеты проводились при значениях постоянных

$$\frac{r_0}{R} = 0.2, \quad \frac{r_1}{R} = 0.4, \quad \frac{r_2}{R} = 0.6, \quad \frac{\alpha \eta_1}{\mu_1} = 0.01638,$$

$$\frac{\alpha \eta_2}{\mu_2} = 0.2195, \quad \frac{k_1}{\mu_1} = 0.00165, \quad \frac{k_2}{\mu_2} = 0.0007.$$
(10)

Если скорость поворота жесткого цилиндра изменяется со временем, например, по закону $\omega = \frac{v_{\varphi}}{r} = \alpha t$, то в некоторый момент времени $t = t'_2$ граница $x_1(t)$ достигнет внешней поверхности слоя $r = r_2$. При этом в области упругого деформирования $r_2 \leqslant r \leqslant R$ справедливы соотношения (2), где c_1 заменено на $c_2 = -k_1 x_2^2$, в областях $r_1 \leqslant r \leqslant r_2, x_2 \leqslant r \leqslant r_1$ и $r_0 \leqslant r \leqslant x_2$ — зависимости (6), (7) и (8), в которых $x_1 = r_2$.

В момент времени $t = t'_3$ граница $x_2(t)$ достигает поверхности $r = r_1$. Начиная с этого момента времени, пластическое течение продолжается в слоях $r_0\leqslant r\leqslant r_1$ и $r_1\leqslant r\leqslant r_2$ и за пределы последнего слоя не развивается. В области $r_2 \leqslant r \leqslant R$, в которой материал попрежнему деформируется упруго, выполняются соотношения (2). В областях течения $r_0 \leq$ $r \leqslant r_1, r_1 \leqslant r \leqslant r_2$ справедливы зависимости (8) и (6) соответственно, где $x_1 = r_2$ и $x_2 = r_1$.

Рис.1. Развитие области вязкопластического течения

Рис.2. Распределение угла поворота в зависимости от радиуса

Развитие еще одной области течения $r_2 \leqslant r \leqslant x_3(t)$ ($x_3(t)$ — граница этой области) начнется при дальнейшем движении жесткого цилиндра и увеличении напряжений, когда в момент времени $t = t'_4$ на поверхности $r = r_2$ выполнится условие пластичности $\sigma_{r\varphi}|_{r=r_2} = -k_1$. В упругой области $x_3(t) \leqslant r \leqslant R$ имеют место те же соотношения, что и ранее. В областях течения найдем

в области $r_2 \leqslant r \leqslant x_3(t)$:

$$\theta = (t - t_4')F_1(c_3, r, x_3) + A(c_3), \quad v_{\varphi} = rF_1(c_3, r, x_3), \quad c_3 = -k_1 x_3^2; \tag{11}$$

в слое $r_1 \leqslant r \leqslant r_2$:

$$\theta = (t - t'_4)F_1(c_3, r_2, x_3) + tF(c_3, r, r_2) + A_1(c_3),$$

$$v_{\varphi} = rF_1(c_3, r_2, x_3) + rF(c_3, r, r_2);$$
(12)

в области $r_0 \leqslant r \leqslant r_1$:

$$\theta = (t - t_4')F_1(c_3, r_2, x_3) + tF(c_3, r_1, r_2) + (t - t_1')F_1(c_3, r, r_1) + A_2(c_3),$$

$$v_{\varphi} = rF_1(c_3, r_2, x_3) + rF(c_3, r_1, r_2) + rF_1(c_3, r, r_1).$$
(13)

Для определения границ вязкопластических областей в случае ускоренного вращения жесткого цилиндра необходимо решить уравнения:

$$F(c_1, r_1, x_1) = \alpha t_1, \qquad t_0 \leqslant t_1 \leqslant t_1';$$

$$F_1(c_1, r_0, x_2) + F(c_1, r_1, x_1) = \alpha t_2, \qquad k_1 x_2^2 = k_2 x_1^2, \qquad t_1' \leqslant t_2 \leqslant t_2';$$

$$F_1(c_2, r_0, x_2) + F(c_2, r_1, r_2) = \alpha t_3, \qquad t_2' \leqslant t_3 \leqslant t_3';$$

$$F_1(c_3, r_0, r_1) + F_1(c_3, r_2, x_3) + F(c_3, r_1, r_2) = \alpha t_4, \qquad t_4' \leqslant t_4;$$
(14)

В момент времени $t = t'_5$ граница $x_3(t)$ достигает внешней жесткой поверхности r = R. На рис.3. показан закон продвижения упругопластической границы $x_1(\tau)$ в случае ускоренного вращения жесткого цилиндра $\left(\tau = \alpha t^2, \frac{\eta_1 \sqrt{\alpha}}{\mu_1} = 0.1638, \frac{\eta_2 \sqrt{\alpha}}{\mu_2} = 2.195\right)$.

Рис.3. Развитие области вязкопластического течения

Согласно формулам (1) для компонент пластических деформаций, справедливы зависимости

$$\begin{split} p_{r\varphi} &= \frac{k_1(t-t_4')}{\eta_1} \left(1 - \frac{x_3^2}{r^2} \right), \qquad \text{в области } r_2 \leqslant r \leqslant x_3(t), \\ p_{r\varphi} &= \frac{t}{\eta_2} \left(k_2 - \frac{k_1 x_3^2}{r^2} \right), \qquad \text{в области } r_1 \leqslant r \leqslant r_2, \\ p_{r\varphi} &= \frac{k_1(t-t_1')}{\eta_1} \left(1 - \frac{x_3^2}{r^2} \right), \qquad \text{в области } r_0 \leqslant r \leqslant r_1, \\ p_{\varphi\varphi} &= 2e_{r\varphi} p_{r\varphi}, \qquad p_{rr} = 2d_{r\varphi} (e_{r\varphi} - d_{r\varphi}). \end{split}$$

Распределение угла поворота в зависимости от радиуса в процессе вязкопластического течения показано на рис. 4.

4. Разгрузка и вязкопластическое течение при повороте внутренней поверхности в обратном направлении. При остановке внутреннего цилиндра в некоторый момент времени $t = t^*$ перемещения, деформации и напряжения перестают изменяться во всей области деформирования. Область вязкопластического течения также далее не увеличивается.

Рассмотрим, как будет изменяться напряженно-деформированное состояние, если начиная с момента времени $t = t^*$, поворачивать цилиндр в обратную сторону. До достижения функцией θ значения $\theta(t_2^*) = \theta_2$ происходит только обратимое деформирование. В момент времени $t = t_2^*$, напряженное состояние в окрестности внутренней поверхности слоя $r = r_1$ выходит на поверхность нагружения

$$\sigma_{r\varphi}\big|_{r=r_1} = k_2. \tag{1}$$

Рис.4. Распределение угла поворота в зависимости от радиуса

То есть компонента напряжений $\sigma_{r\varphi} = c(t)/r^2$ сначала уменьшается по абсолютной величине, а начиная с момента времени $t = t_1^*$ ($\theta(t_1^*) = \theta_*$), возрастает, до тех пор пока в окрестности внутренней поверхности слоя не выполнится условие пластичности (1) и не начнет развиваться новая область пластического течения. В момент времени $t = t_1^*$ в силу непрерывности напряжений получаем, что $c(t_1^*) = \sigma_{r\varphi} = 0$ во всей области деформирования.

Пусть внутренний цилиндр поворачивается с постоянной скоростью, и только в областях $r_0 \leq r \leq x_2$ и $r_1 \leq r \leq x_1$ $(x_1, x_2 - 3$ начения упругопластических границ в момент времени t^*) есть накопленные необратимые деформации. Для нахождения значений θ_* и θ_2 необходимо решить задачу упругого равновесия с накопленными необратимыми деформациями. В областях обратимого деформирования $x_1 \leq r \leq r_2$ и $r_2 \leq r \leq R$ по-прежнему справедливы зависимости (2). Учитывая, что до момента начала пластического течения компонента $p_{r\varphi}$ тензора пластических деформаций не изменяется ($\varepsilon_{r\varphi}^p = 0$), определим функцию $\theta(r, t)$ из равенства $d_{r\varphi} = e_{r\varphi} + p_{r\varphi}$ и условия непрерывности $\theta(r, t)$ при $r = x_1$ и $r = x_2$ в областях:

$$r_{1} \leqslant r \leqslant x_{1}: \qquad \theta = t^{*}F(b_{1}, r, x_{1}) + A_{1}(b), \qquad b_{1} = c(t^{*});$$

$$x_{2} \leqslant r \leqslant r_{1}: \qquad \theta = t^{*}F(b_{1}, r_{1}, x_{1}) + A_{2}(b); \qquad (2)$$

$$r_{0} \leqslant r \leqslant x_{2}: \qquad \theta = t^{*}F(b_{1}, r_{1}, x_{1}) + (t^{*} - t'_{1})F_{1}(b, r, x_{2}) + A_{2}(b).$$

Из равенств (1)
и $c(t_1^*)=0$ определим углы θ_*
и θ_2

$$\begin{aligned} \theta_* &= t^* F(b_1, r_1, x_1) + (t^* - t_1') F_1(b_1, r_0, x_2), \\ \theta_2 &= \theta_* + A_2(b_2), \qquad b_2 = k_2 r_1^2. \end{aligned}$$

Начиная с момента времени $t = t_2^*$, будет развиваться область вязкопластического течения $r_1 \leq r \leq x_1^*(t)$. В областях $x_1 \leq r \leq r_2$ и $r_2 \leq r \leq R$, как и выше, функция $\theta(r, t)$ определяется соотношениями (2), в которых c_1 следует заменить новым значением b_3 , в области с накопленными необратимыми деформациями $x_1^*(t) \leq r \leq x_1$ функция $\theta(r, t)$ находится по формуле (2), где b заменено текущим значением b_3 . В области пластического течения $r_1 \leq r \leq x_1^*(t)$ найдем

$$\theta = tF_2(b_3, x_1^*, r) + t^*F(b_1, r, x_1) + A_1(b_3),$$

$$F_2(b_3, x_1^*, r) = \frac{2}{\eta_2} \left(k_2 \ln \frac{x_1^*}{r} - \frac{b_3}{2} \left(\frac{1}{r^2} - \frac{1}{x_1^{*2}} \right) \right), \qquad b_3 = k_2 x_1^{*2}.$$
(3)

Из равенства перемещений на поверхностях $r = r_1$ и $r = x_2$, для функции $\theta(r, t)$ получим в области $x_2 \leq r \leq r_1$:

$$\theta = tF_2(b_3, x_1^*, r_1) + t^*F(b_1, r_1, x_1) + A_2(b_3);$$

в области $r_0 \leqslant r \leqslant x_2$:

$$\theta = tF_2(b_3, x_1^*, r_1) + t^*F(b_1, r_1, x_1) + (t^* - t_1')F_1(b_1, r, x_2) + A_2(b_3).$$

Задавая закон, по которому движется внутренняя поверхность $r = r_0$, получим уравнение для определения границы области вязкопластического течения $x_1^*(t)$. Это уравнение необходимо решать до момента времени $t = t_3^*$, в который в окрестности внутренней жесткой стенки $r = r_0$ начнется новое пластическое течение. Начиная с этого момента времени, в области вязкопластического течения $r_0 \leq r \leq x_2^*(t)$ имеем

$$b_{3} = k_{2}x_{1}^{*2} = k_{1}x_{2}^{*2}, \qquad \theta = A_{2}(b_{3}) + tF_{2}(b_{3}, x_{1}^{*}, r_{1}) + + (t - t_{3}^{*})F_{3}(b_{3}, x_{2}^{*}, r) + t^{*}F(b_{1}, r_{1}, x_{1}) + (t^{*} - t_{1}')F_{1}(b_{1}, r, x_{2}), \qquad (4)$$
$$F_{3}(b_{3}, x_{2}^{*}, r) = \frac{2}{\eta_{1}} \left(k_{1} \ln \frac{x_{2}^{*}}{r} - \frac{b_{3}}{2} \left(\frac{1}{r^{2}} - \frac{1}{x_{2}^{*2}} \right) \right).$$

В областях $x_2^*(t) \leq r \leq x_2, x_2 \leq r \leq r_1, r_1 \leq r \leq x_1^*(t), x_1^*(t) \leq r \leq x_1, x_1 \leq r \leq r_2$ и $r_2 \leq r \leq R$ справедливы те же соотношения, что и ранее.

В момент времени $t = t_4^*$ движущиеся границы $x_1^*(t)$ и $x_2^*(t)$ достигнут соответственно поверхностей $r = x_1$ и $r = x_2$, первоначально ограничивающих пластические области. Рассмотрим напряженно-деформируемое состояние, начиная с этого момента времени. При этом в материале будут следующие семь областей: упругие области $x_2^*(t) \leq r \leq r_1, x_1^*(t) \leq r \leq r_2$ и $r_2 \leq r \leq R$ и области вязкопластического течения $r_0 \leq r \leq x_2, x_2 \leq r \leq x_2^*(t), r_1 \leq r \leq x_1$ и $x_1 \leq r \leq x_1^*(t)$. В областях $x_1^*(t) \leq r \leq r_2$ и $r_2 \leq r \leq R$ функция $\theta(r,t)$ определяется зависимостями (2), где c_1 заменено значением b_3 . В пластической области $x_1 \leq r \leq x_1^*(t)$ найдем

$$\theta = (t - t_4^*)F_2(b_3, x_1^*, r) + A_1(b_3).$$

В области вязкопластического течения $r_1 \leq r \leq x_1$ компонента $p_{r\varphi}$ тензора пластических деформаций определяется по формуле

$$p_{r\varphi} = \frac{t - t_4^*}{\eta_2} \left(\frac{b_3}{r^2} - k_2 \right) - \frac{t_4^* - t^*}{\eta_2} \left(\frac{b_1}{r^2} + k_2 \right).$$
(5)

Используя это соотношение и условие непрерывности $\theta(r,t)$ на поверхностях $r = x_1, r = r_1$ и $r = x_2^*$, найдем функцию $\theta(r,t)$

в области $r_1 \leqslant r \leqslant x_1$:

$$= (t - t_4^*)F_2(b_3, x_1^*, r) + (t_4^* - t^*)F(b_1, x_1, r) + A_1(b_3);$$

в области $x_2^*(t) \leq r \leq r_1$:

 θ

$$\theta = (t - t_4^*)F_2(b_3, x_1^*, r_1) + (t_4^* - t^*)F(b_1, x_1, r_1) + A_2(b_3);$$

в области $x_2 \leqslant r \leqslant x_2^*(t)$:

$$\theta = (t - t_4^*)F_3(b_3, x_2^*, r) + (t - t_4^*)F_2(b_3, x_1^*, r_1) + (t_4^* - t^*)F(b_1, x_1, r_1) + A_2(b_3).$$

В пластической област
и $r_0\leqslant r\leqslant x_2$ для компоненты пластических деформаций
 $p_{r\varphi}$ имеем

$$p_{r\varphi} = \frac{t - t_4^*}{\eta_1} \left(\frac{b_3}{r^2} - k_1 \right) - \frac{t_4^* - t_3^* - t^* + t_1'}{\eta_1} \left(\frac{b_1}{r^2} + k_1 \right).$$
(6)

Тогда в этой области $\theta(r,t)$ определяется зависимостью

$$\begin{aligned} \theta &= (t - t_4^*) F_3(b_3, x_2^*, r) + (t - t_4^*) F_2(b_3, x_1^*, r_1) + (t_4^* - t^*) F(b_1, x_1, r_1) + \\ &+ (t_4^* - t_3^* - t^* + t_1') F_1(b_1, x_2, r) + A_2(b_3). \end{aligned}$$

Как и ранее, задавая значения θ при $r = r_0$ в каждый момент времени $\theta(r_0, t) = \theta_2(1 - \alpha t)$, найдем x_1^* и x_2^* . На рис.5. показано развитие области $r_1 \leq r \leq x_1^*$

вязкопластического течения при движении цилиндра в обратном направлении, на рис.6. — функция $\theta(r)$ в выделенные моменты времени.

Рис.5. Развитие области вязкопластического течения при повороте цилиндра в обратную сторону

Рис.6. Распределение угла поворота в зависимости от радиуса при движении цилиндра в обратную сторону

В том случае, когда внутренний цилиндр вращается ускоренно, конечный момент нагружения выберем в интервале $t'_4 \leq t^* \leq t'_5$. Тогда при остановке цилиндра в материале будет упругая область $x_3 \leq r \leq R$ и три области с накопленными необратимыми деформациями $r_0 \leq r \leq r_1$, $r_1 \leq r \leq r_2$ и $r_2 \leq r \leq x_3$. При движении цилиндра в обратном направлении до начала пластического течения функция $\theta(r, t)$ находится по формулам:

в области $r_2 \leqslant r \leqslant x_3$:

$$\theta = (t^* - t'_4)F_1(b_4, r, x_3) + A(b), \qquad b_4 = c(t^*);$$

в слое $r_1 \leqslant r \leqslant r_2$:

$$\theta = (t^* - t'_4)F_1(b_4, r_2, x_3) + t^*F(b_4, r, r_2) + A_1(b);$$

в области $r_0 \leqslant r \leqslant r_1$:

$$\theta = (t^* - t'_4)F_1(b_4, r_2, x_3) + t^*F(b_4, r_1, r_2) + (t^* - t'_1)F_1(b_4, r, r_1) + A_2(b)$$

В области обратимого деформирования $x_3 \leq r \leq R$ по-прежнему справедливы зависимости (2).

Значения θ_* и θ_2 определяются соотношениями

$$\theta_* = (t^* - t'_4)F_1(b_4, r_2, x_3) + t^*F(b_4, r_1, r_2) + (t^* - t'_1)F_1(b_4, r_0, r_1),$$

$$\theta_2 = \theta_* + A_2(b_5), \qquad b_5 = k_2r_1^2.$$

При дальнейшем уменьшении угла θ для определения компонент напряжений уравнения равновесия необходимо проинтегрировать в пяти областях: в области обратимого деформирования $x_3 \leq r \leq R$, в областях с неизменяющимся тензором необратимых деформаций $r_0 \leq r \leq r_1, x_1^*(t) \leq r \leq r_2, r_2 \leq r \leq x_3$ и в области пластического течения $r_1 \leq r \leq x_1^*(t)$. В областях $x_1^*(t) \leq r \leq r_2, r_2 \leq r \leq x_3, x_3 \leq r \leq R$ справедливы те же формулы, что и ранее, в области пластического течения $r_1 \leq r \leq x_1^*(t)$, используя условие непрерывности θ и ее производных при $r = x_1^*$, получим

$$\theta = tF_2(b_6, x_1^*, r) + (t^* - t_4')F_1(b_4, r_2, x_3) + t^*F(b_4, r, r_2) + A_1(b_6),$$

$$v_{\varphi} = rF_2(b_6, x_1^*, r), \qquad b_6 = k_2 x_1^{*2}.$$
(7)

В области $r_0 \leqslant r \leqslant r_1$ имеем

$$\theta = tF_2(b_6, x_1^*, r_1) + (t^* - t_4')F_1(b_4, r_2, x_3) + t^*F(b_4, r_1, r_2) + (t^* - t_1')F_1(b_4, r, r_1) + A_2(b_6), \qquad \upsilon_{\varphi} = rF_2(b_6, x_1^*, r_1).$$
(8)

Данное напряженно-деформированное состояние справедливо до момента времени $t = t_3^*$, в который в окрестности внутренней жесткой стенки $r = r_0$ начинается новое пластическое течение. При этом в областях $x_2^*(t) \leq r \leq r_1$, $r_1 \leq r \leq x_1^*(t)$, $x_1^*(t) \leq r \leq r_2$, $r_2 \leq r \leq x_3$, и $x_3 \leq r \leq R$ имеют место те же соотношения, что и ранее, в области вязкопластического течения $r_0 \leq r \leq x_2^*(t)$ найдем

$$\theta = A_2(b_6) + (t - t_3^*)F_3(b_6, x_2^*, r) + tF_2(b_6, x_1^*, r_1) + + (t^* - t_4')F_1(b_4, r_2, x_3) + t^*F(b_4, r_1, r_2) + (t^* - t_1')F_1(b_4, r, r_1), v_{\varphi} = rF_2(b_6, x_1^*, r_1) + rF_3(b_6, x_2^*, r).$$
(9)

С течением времени, сначала граница $x_1^*(t)$ достигнет внешней поверхности слоя $r = r_2$, затем граница $x_2^*(t)$ достигнет поверхности $r = r_1$. При этом в материале останется четыре области. В области обратимого деформирования $x_3 \leq r \leq R$ и в области с неизменяющимися пластическими деформациями $r_2 \leq r \leq x_3$ имеют место те же соотношения, что и ранее. В слое $r_1 \leq r \leq r_2$ и в области $r_0 \leq r \leq r_1$ функция $\theta(r,t)$ определяется по формулам (7) и (9), где $x_1^* = r_2$ и $x_2^* = r_1$.

Рассмотрим напряженно-деформируемое состояние, начиная с момента времени $t = t_4^*$, когда на поверхности $r = r_2$ выполнится условие пластичности $\sigma_{r\varphi}|_{r=r_2} = k_1$, и начнет свое развитие еще одна область вязкопластического течения $r_2 \leqslant r \leqslant x_3^*$. В области упругого равновесия $x_3 \leqslant r \leqslant R$ и в области с неизменяющимися пластическими деформациями $x_3^*(t) \leqslant r \leqslant x_3$ справедливы те же соотношения, что и ранее. В областях вязкопластического течения, используя условие непрерывности перемещений, получим

в области $r_2 \leqslant r \leqslant x_3^*(t)$:

$$\theta = (t - t_4^*) F_3(b_7, x_3^*, r) + (t^* - t_4') F_1(b_4, r, x_3) + A(b_7),$$

$$b_7 = k_1 x_3^{*2}, \qquad v_{\varphi} = r F_3(b_6, x_3^*, r);$$

в слое $r_1 \leqslant r \leqslant r_2$:

$$\theta = (t - t_4^*)F_3(b_7, x_3^*, r_2) + (t^* - t_4')F_1(b_4, r_2, x_3) + t^*F(b_4, r, r_2) + + tF_2(b_7, r_2, r) + A_2(b_7), \qquad v_{\varphi} = rF_2(b_6, r_2, r) + rF_3(b_6, x_3^*, r_2);$$

в области $r_0 \leqslant r \leqslant r_1$:

$$\begin{aligned} \theta &= (t - t_4^*) F_3(b_7, x_3^*, r_2) + (t^* - t_4') F_1(b_4, r_2, x_3) + t^* F(b_4, r_1, r_2) + \\ &+ t F_2(b_7, r_2, r_1) + (t - t_3^*) F_3(b_7, r_1, r) + (t^* - t_1') F_1(b_4, r, r_1) + A_2(b_7), \\ v_\varphi &= r F_2(b_6, r_2, r_1) + r F_3(b_6, x_3^*, r_2) + r F_3(b_6, r_1, r). \end{aligned}$$

Начиная с момента времени $t = t_5^*$, в который граница $x_3^*(t)$ достигнет поверхности $r = x_3$, в материале будут пять областей: $x_3^*(t) \leq r \leq R$ — область обратимого деформирования, $r_0 \leq r \leq r_1, r_1 \leq r \leq r_2, r_2 \leq r \leq x_3, x_3 \leq r \leq x_3^*(t)$ — области вязкопластического течения. В области упругого деформирования по-прежнему выполняются зависимости, что и ранее. В областях вязкопластического течения имеем

в области $x_3 \leqslant r \leqslant x_3^*(t)$:

$$\theta = (t - t_5^*)F_3(b_7, x_3^*, r) + A(b_7), \qquad v_{\varphi} = rF_3(b_6, x_3^*, r);$$

в области $r_2 \leqslant r \leqslant x_3$:

$$\theta = (t - t_5^*)F_3(b_7, x_3^*, r) + (t_5^* - t_4^* - t^* + t_1')F_1(b_4, x_3, r) + A(b_7),$$

$$\upsilon_{\varphi} = rF_3(b_6, x_3^*, r);$$

в слое $r_1 \leqslant r \leqslant r_2$:

$$\theta = (t - t_5^*)F_3(b_7, x_3^*, r_2) + (t_5^* - t_4^* - t^* + t_1')F_1(b_4, x_3, r_2) + t^*F(b_4, r, r_2) + tF_2(b_7, r_2, r) + A_2(b_7), \qquad v_{\varphi} = rF_2(b_6, r_2, r) + rF_3(b_6, x_3^*, r_2);$$

в области $r_0 \leqslant r \leqslant r_1$:

$$\begin{aligned} \theta &= (t - t_5^*)F_3(b_7, x_3^*, r_2) + (t_5^* - t_4^* - t^* + t_1')F_1(b_4, x_3, r_2) + t^*F(b_4, r_1, r_2) + \\ &+ tF_2(b_7, r_2, r_1) + (t - t_3^*)F_3(b_7, r_1, r) + (t^* - t_1')F_1(b_4, r, r_1) + A_2(b_7) \\ &v_{\omega} &= rF_2(b_6, r_2, r_1) + rF_3(b_6, x_3^*, r_2) + rF_3(b_6, r_1, r). \end{aligned}$$

Рис.7. Распределение угла поворота в зависимости от радиуса при движении цилиндра в обратную сторону

Как и ранее, задавая закон нагружения при $r = r_0$ ($\omega = -\alpha t$), найдем функцию $x_3^*(t)$. С течением времени граница $x_3^*(t)$ достигает внешней поверхности r = R. На рис.7. показаны графики функции θ при движении жесткого цилиндра в обратном направлении.

5. Деформирование при повороте внешней жесткой поверхности. Рассмотрим теперь деформирование материала в случае ускоренного вращения внешнего жесткого цилиндра, когда внутренний цилиндр жестко закреплен:

$$u_r = u_\varphi = 0 \qquad \text{при} \qquad r = r_0. \tag{1}$$

В отличие от случая движения внутреннего цилиндра выберем постоянные так, чтобы выполнялось неравенство $\sqrt{\frac{k_1}{k_2}} < \frac{r_1}{r_0}$, тогда пластическое течение начинается на поверхности $r = r_0$ при выполнении условия пластичности в форме

$$\sigma_{r\varphi}\Big|_{r=r_0} = k_1.$$

Перемещения в условиях упругого равновесия определяются соотношениями в области $r_0 \leqslant r \leqslant r_1$:

$$\theta = B(c), \qquad B(c) = \frac{c}{2\mu_1} \left(\frac{1}{r_0^2} - \frac{1}{r^2}\right);$$

в слое $r_1 \leqslant r \leqslant r_2$:

$$\theta = B_1(c), \qquad B_1(c) = \frac{c}{2\mu_1} \left(\frac{1}{r_0^2} - \frac{1}{r_1^2} \right) + \frac{c}{2\mu_2} \left(\frac{1}{r_1^2} - \frac{1}{r^2} \right); \tag{2}$$

в области $r_2 \leqslant r \leqslant R$:

$$\theta = B_2(c), \qquad B_2(c) = \frac{c}{2\mu_1} \left(\frac{1}{r_0^2} - \frac{1}{r_1^2} + \frac{1}{r_2^2} - \frac{1}{r^2} \right) + \frac{c}{2\mu_2} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right).$$

Пластическое течение в этом случае начнется, когда угол поворота внешнего цилиндра достигнет значения

$$\theta_0 = \frac{k_1}{2\mu_1} \left(\frac{r_0^2}{r_2^2} - \frac{r_0^2}{R^2} - \frac{r_0^2}{r_1^2} + 1 \right) + \frac{k_1}{2\mu_2} \left(\frac{r_0^2}{r_1^2} - \frac{r_0^2}{r_2^2} \right). \tag{3}$$

Далее у внутренней поверхности $r = r_0$ будет развиваться область вязкопластического течения $r_0 \leq r \leq x_1(t)$, В областях $x_1(t) \leq r \leq r_1$, $r_1 \leq r \leq r_2$, $r_2 \leq r \leq R$ материал находится в упругом состоянии.

В области вязкопластического течения найдем

$$\varepsilon_{r\varphi}^{p} = \frac{1}{\eta_{1}} \left(\frac{c_{1}}{r^{2}} - k_{1} \right), \quad \theta = tH(c_{1}, r, r_{0}) + B(c_{1}), \quad v_{\varphi} = rH(c_{1}, r, r_{0}),$$

$$c_{1} = k_{1}x_{1}^{2}, \qquad H(c_{1}, r, r_{0}) = \frac{2}{\eta_{1}} \left(k_{1} \ln \frac{r_{0}}{r} + \frac{c_{1}}{2} \left(\frac{1}{r_{0}^{2}} - \frac{1}{r^{2}} \right) \right).$$
(4)

В областях упругого деформирования скорость равна $v_{\varphi} = rF(c_1, x_1, r_0)$, а функция θ определяется по формулам

$$\theta = tH(c_1, x_1, r_0) + B(c_1),$$
 в области $x_1(t) \leqslant r \leqslant r_1,$
 $\theta = tH(c_1, x_1, r_0) + B_1(c_1),$ в области $r_1 \leqslant r \leqslant r_2,$ (5)
 $\theta = tH(c_1, x_1, r_0) + B_2(c_1),$ в области $r_2 \leqslant r \leqslant R.$

Данное напряженно-деформированное состояние справедливо до момента времени $t = t'_1$, в который на внутренней поверхности слоя $r = r_1$ выполнится условие пластичности в форме $\sigma_{r\varphi}|_{r=r_1} = k_2$ и начнет свое развитие еще одна область вязкопластического течения $r_1 \leq r \leq x_2(t)$. В областях $r_0 \leq r \leq x_1(t)$ и $x_1(t) \leq r \leq r_1$ имеют место те же соотношения, что и ранее. В остальных областях получим

в области вязкопластического течения $r_1 \leq r \leq x_2(t)$:

$$\varepsilon_{r\varphi}^{p} = \frac{1}{\eta_{1}} \left(\frac{c_{1}}{r^{2}} - k_{2} \right), \quad \theta = tH(c_{1}, x_{1}, r_{0}) + (t - t_{1}')H_{1}(c_{1}, r, r_{1}) + B_{1}(c_{1}),$$

$$v_{\varphi} = rH(c_{1}, x_{1}, r_{0}) + rH_{1}(c_{1}, r, r_{1}), \qquad c_{1} = k_{1}x_{1}^{2} = k_{2}x_{2}^{2}, \qquad (6)$$

$$H_{1}(c_{1}, r, r_{1}) = \frac{2}{\eta_{1}} \left(k_{2} \ln \frac{r_{1}}{r} + \frac{c_{1}}{2} \left(\frac{1}{r_{1}^{2}} - \frac{1}{r^{2}} \right) \right).$$

в упругих областях:

$$v_{\varphi} = rH(c_1, x_1, r_0) + rH_1(c_1, x_2, r_1),$$

$$x_2(t) \leqslant r \leqslant r_2: \qquad \theta = tH(c_1, x_1, r_0) + (t - t_1')H_1(c_1, x_2, r_1) + B_1(c_1); \qquad (7)$$

$$r_2 \leqslant r \leqslant R: \qquad \theta = tH(c_1, x_1, r_0) + (t - t_1')H_1(c_1, x_2, r_1) + B_2(c_1).$$

В момент времени $t = t'_2$ граница $x_2(t)$ достигает внешней поверхности слоя $r = r_2$. При этом в областях $r_0 \leqslant r \leqslant x_1(t)$, $x_1(t) \leqslant r \leqslant r_1$ и $r_1 \leqslant r \leqslant r_2$ справедливы зависимости (4), (5) и (6) соответственно, в области $r_2 \leqslant r \leqslant R$ упругого деформирования — (7), в которых $x_2 = r_2$. Начиная с момента времени $t = t'_3$, когда граница $x_1(t)$ достигает поверхности $r = r_1$, пластические деформации продолжают накапливаться в областях $r_0 \leqslant r \leqslant r_1$ и $r_1 \leqslant r \leqslant r_2$, и вязкопластическое течение за пределы слоя $r_1 \leqslant r \leqslant r_2$ не развивается. В области $r_0 \leqslant r \leqslant r_1$ выполняются соотношения (4), в слое $r_1 \leqslant r \leqslant r_2$ и в упругой области $r_2 \leqslant r \leqslant R$ функция θ находится по формулам (6) и (7), где $x_1 = r_2$ и $x_2 = r_1$.

В момент времени $t = t'_4$ на поверхности $r = r_2$ выполнится условие пластичности $\sigma_{r\varphi}|_{r=r_2} = k_1$. С этого момента времени начнет свое развитие новая область пластического течения $r_2 \leq r \leq x_3(t)$. Поля перемещений и скоростей в этом случае определяются соотношениями

в области $r_0 \leqslant r \leqslant r_1$:

$$\theta = tH(c_3, r, r_0) + B(c_3), \qquad v_{\varphi} = rH(c_3, r, r_0), \qquad c_3 = k_1 x_3^2;$$

в области $r_1 \leqslant r \leqslant r_2$:

$$\theta = tH(c_3, r_1, r_0) + (t - t_1')H_1(c_3, r, r_1) + B_1(c_3),$$

$$v_{\alpha} = rH(c_3, r_1, r_0) + rH_1(c_3, r, r_1);$$

в области $r_2 \leqslant r \leqslant x_3$:

$$\begin{split} \theta &= tH(c_3,r_1,r_0) + (t-t_1')H_1(c_3,r_2,r_1) + (t-t_4')H(c_3,r,r_2) + B_2(c_3), \\ v_\varphi &= rH(c_3,r_1,r_0) + rH_1(c_3,r_2,r_1) + rH(c_3,r,r_2). \end{split}$$

Для определения границ вязкопластических областей в случае движения внешнего цилиндра получим уравнения:

$$\begin{aligned} H(c_1, x_1, r_0) &= \alpha t_1, & t_0 \leqslant t_1 \leqslant t_1'; \\ H_1(c_1, x_2, r_1) &+ H(c_1, x_1, r_0) &= \alpha t_2, & k_1 x_1^2 = k_2 x_2^2, & t_1' \leqslant t_2 \leqslant t_2'; \\ H_1(c_2, r_2, r_1) &+ H(c_2, x_1, r_0) &= \alpha t_3, & t_2' \leqslant t_3 \leqslant t_3'; \\ H(c_3, r_1, r_0) &+ H(c_3, x_3, r_2) + H_1(c_3, r_2, r_1) &= \alpha t_4, & t_4' \leqslant t_4; \end{aligned}$$

Рис.8. Распределение угла поворота в зависимости от радиуса при движении внешнего цилиндра

Компоненты пластических деформаций определяются по формулам

$$\begin{split} p_{r\varphi} &= \frac{k_1(t-t_4')}{\eta_1} \left(\frac{x_3^2}{r^2} - 1\right), \qquad \text{в области } r_2 \leqslant r \leqslant x_3(t), \\ p_{r\varphi} &= \frac{(t-t_1')}{\eta_2} \left(\frac{k_1 x_3^2}{r^2} - k_2\right), \qquad \text{в области } r_1 \leqslant r \leqslant r_2, \\ p_{r\varphi} &= \frac{k_1 t}{\eta_1} \left(\frac{x_3^2}{r^2} - 1\right), \qquad \text{в области } r_0 \leqslant r \leqslant r_1, \\ p_{\varphi\varphi} &= 2e_{r\varphi} p_{r\varphi}, \qquad p_{rr} = 2d_{r\varphi} (e_{r\varphi} - d_{r\varphi}). \end{split}$$

Распределение функции θ при повороте внешнего жесткого цилиндра показано на рис. 8 $\left(\frac{r_1}{R} = 0.6, \frac{r_2}{R} = 0.7\right)$.

Рис.9. Распределение угла поворота в зависимости от радиуса при движении внешнего цилиндра в обратную сторону

При остановке внешнего цилиндра и повороте его в противоположном направлении наблюдаются те же эффекты, что и при движении внутреннего цилиндра. Повторное пластическое течение впервые начинается в окрестности внутренней поверхности $r = r_0$; после того, как при $r = r_1$ выполнится условие пластичности $\sigma_{r\varphi}|_{r=r_1} = -k_2$, будет развиваться еще одна область пластического течения. Когда напряженное состояние выйдет на поверхность нагружения $\sigma_{r\varphi}|_{r=r_2} = -k_1$, вязкопластическое течение будет происходить и в области $r_2 \leq r \leq x_3^*$. Затем граница x_3^* переходит через поверхность $r = x_3$ и с течением времени достигает внешней жестокой поверхности. На рис.9. приведено распределение угла поворота в этом случае.

ЛИТЕРАТУРА

[1] Бахшиян, Ф. А. Вращение жесткого цилиндра в вязко-пластичной среде / Ф. А. Бахшиян // ПММ. – 1948. – Т. 12, вып. 6. – С. 650–661.

[2] Буренин, А. А. Об одной простой модели для упругопластической среды при конечных деформациях / А. А. Буренин, Г. И. Быковцев, Л. В. Ковтанюк // Доклады АН СССР. – 1996. – Т. 347, № 2. – С. 199–201.

[3] Буренин, А. А. Вискозиметрическое течение упруговязкопластического материала между жесткими коаксиальными цилиндрическими поверхностями / А. А. Буренин, Л. В. Ковтанюк, А. С. Устинова // Вестник ЧГПУ им. И. Я. Яковлева. Серия: Механика предельного состояния. – 2007. – № 1. – С. 18–25.

[4] *Буренин, А. А.* Об учете упругих свойств неньютоновского материала при его вискозиметрическом течении / А. А. Буренин, Л. В. Ковтанюк, А. С. Устинова // ПМТФ. – 2008. – Т. 49, № 2. – С. 143–151.

[5] Буренин, А. А. Развитие и торможение винтового вязкопластического течения с расчетом упругого отклика после остановки течения и разгрузки / А. А. Буренин, А. С. Устинова // Успехи механики сплошных сред : к 70-летию академика В. А. Левина : сб. научн. тр. – Владивосток : Дальнаука. – 2009. – С. 91–102.

[6] Быковцев, Г. И. О вязкопластическом течении в некруговых цилиндрах при наличии перепада давления / Г. И. Быковцев, А. Д. Чернышов // ПМТФ. – 1964. – № 4. – С. 94—96.

[7] Знаменский, В. А. Об уравнениях вязкопластического тела при кусочно-линейных потенциалах / В. А. Знаменский, Д. Д. Ивлев // Известия АН СССР. ОТН. Механика и машиностроение. – 1963. – № 6. – С. 114–118.

[8] Ковтанюк, Л. В. О теории больших упругопластических деформаций при учете температурных и реологических эффектов / Л. В. Ковтанюк, А. В. Шитиков // Вестник ДВО РАН. – 2006. – № 4. – С. 87–93.

[9] *Мосолов, П. П.* Механика жесткопластических сред / П. П. Мосолов, В. П. Мясников. – М. : Наука, 1981. – 208 с.

[10] *Мясников, В. П.* Некоторые точные решения для прямолинейных движений вязкопластической среды / В. П. Мясников // ПМТФ. – 1961. – № 2. – С. 79–86.

[11] *Огибалов, П. М.* Нестационарные движения вязкопластических сред / П. М. Огибалов, А. Х. Мирзаджанзаде. – М. : Изд-во Моск. ун-та, 1970. – 415 с.

[12] *Резунов, А. В.* Задача о чистом сдвиге вязко-пластического материала между двумя цилиндрическими поверхностями / А. В. Резунов, А. Д. Чернышов // Механика деформируемого твердого тела : межвуз. сб. – Куйбышев, 1975. – С. 32–36.

[13] *Сафрончик, А. И.* Вращение цилиндра с переменной скоростью в вязкопластичной среде / А.И. Сафрончик // ПММ. – 1959. – Т. 23. – Вып. 6. – С. 998–1014.

A. A. Burenin, L. V. Kovtanyuk, A. S. Ustinova

A VISCOSIMETRIC CURRENT OF THE ELASTOVISCOPLASTIC ENVIRONMENT WEAKENED BY A LAYER OF MORE PLIABLE MATERIAL

Institute of Automation and Control Processes Dalneeast branch of the Russian Academy of Sciences

Abstract. Deformation of the elastoviscoplastic environment between two rigid coaxial cylinders at turn of one of them is considered. An environment is weakened by a layer of more pliable material. The decision is under construction within the limits of a big elastoviscoplastic deformations' model. A reversible deformation, a visco-plastic current, a case of a stop of the cylinder and its deformation at turn in the opposite direction are considered. The movement laws of the borders of developing areas of the visco-plastic currents at various speeds of turn of surfaces are received.

Keywords: elasticity, viscoplasticity, the big deformations, the residual pressures.

Буренин Анатолий Александрович

чл.-корр. РАН, доктор физико-математических наук, профессор, заведующий лабораторией механики деформируемого твердого тела Института автоматики и процессов управления ДВО РАН, г. Владивосток

e-mail: burenin@iacp.dvo.ru

Ковтанюк Лариса Валентиновна

доктор физико-математических наук, ведущий научный сотрудник лаборатории механики деформируемого твердого тела Института автоматики и процессов управления ДВО РАН, г. Владивосток

e-mail: lk@iacp.dvo.ru

Устинова Александра Сергеевна

аспирант лаборатории механики деформируемого твердого тела Института автоматики и процессов управления ДВО РАН, г. Владивосток

e-mail: asustinova@mail.ru

Burenin Anatoly Alexandrovich

Corresponding Member, Russian Academy of Sciences, Dr. Sci. Phys. & Math., Professor, Institute of Automatics and Managerial Processes of Far East Branch of the Russian Academy of Sciences, Vladivostok

Kovtanyuk Larissa Valentinovna

Dr. Sci. Phys. & Math., Institute of Automatics and Managerial Processes of Far East Branch, Russian Academy of Sciences, Vladivostok

Ustinova Alexandra Sergeevna

Postgraduate Student, Laboratory of Mechanics of a Deformable firm body, Institute of Automatics and Managerial Processes of Far East Branch, Russian Academy of Sciences, Vladivostok