И. Н. Зиновьев, А. С. Чеботарёв

ПРИМЕНЕНИЕ МЕТОДА РИМАНА В ЗАДАЧАХ ПЛОСКОЙ ДЕФОРМАЦИИ ТЕОРИИ ИДЕАЛЬНОЙ ПЛАСТИЧНОСТИ С КРУГОВОЙ ГРАНИЦЕЙ

Воронежский государственный университет

Аннотация. В статье рассматривается вывод уравнений линий скольжения методом Римана для задачи плоской деформации теории идеальной пластичности с границей в виде части окружности. В параметрическом виде приведены решения как в случае с трением на границе, так и в его отсутствии.

Ключевые слова: линии скольжения, метод Римана, пластичность, точные решения, напряжения, предел текучести.

УДК: 539.374

Исследуем поле напряжений вокруг кругового отверстия радиуса R в плоской задаче среды, находящейся в состоянии идеальной пластичности. Контур нагружен равномерным давлением p при отсутствии касательных напряжений.

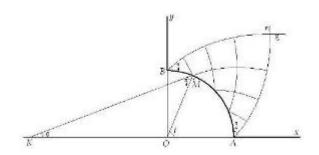


Рис. 1. Сетка линий скольжения

Рассматриваем кривую AB, являющуюся четвертью окружности радиуса R, расположенную в первой четверти (рис.1). Угол θ является углом наклона касательной к линии скольжения ξ к оси x. Известно [1], [2], [3], [5], [7], [8],что сетка линий скольжения, построенная в пластической зоне с границей в виде части окружности, представляет собой два семейства логарифмических спиралей в случае отсутствия касательных напряжений на границе. При этом линии скольжения подходят к границе AB под углом равным $\frac{\pi}{4}$. Представим уравнение окружности в параметрическом виде

$$\begin{cases} x = R\cos(t) \\ y = R\sin(t) \\ 0 \leqslant t \leqslant \frac{\pi}{2}. \end{cases}$$

Из треугольника OMK следует, что $t=\theta+\frac{\pi}{4},$ следовательно:

$$\begin{cases} x = R\cos(\theta + \frac{\pi}{4}) \\ y = R\sin(\theta + \frac{\pi}{4}) \\ -\frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{4}. \end{cases}$$
 (1)

Перейдем к переменным Михлина:

$$\begin{cases} X = x\cos(\theta) + y\sin(\theta), \\ Y = -x\sin(\theta) + y\cos(\theta). \end{cases}$$
 (2)

Подставив (1) в (2), получим

$$\begin{cases} X = R\cos\left(\theta + \frac{\pi}{4}\right)\cos(\theta) + R\sin\left(\theta + \frac{\pi}{4}\right)\sin(\theta) = R\cos\left(\frac{\pi}{4}\right) = R\frac{\sqrt{2}}{2}, \\ Y = -R\cos\left(\theta + \frac{\pi}{4}\right)\sin(\theta) + R\sin\left(\theta + \frac{\pi}{4}\right)\cos(\theta) = R\sin\left(\frac{\pi}{4}\right) = R\frac{\sqrt{2}}{2}. \end{cases}$$
(3)

Переменные Михлина X и Y являются константами вдоль AB. При плоской деформации уравнения равновесия принимаю канонический вид [3]

$$\begin{cases}
\frac{\partial y}{\partial \xi} + \frac{\partial x}{\partial \xi} \operatorname{ctg} \theta = 0 \\
\frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \operatorname{tg} \theta = 0,
\end{cases} (4)$$

В переменных ξ, η определяемых формулами

$$\begin{cases}
\sigma = k(\xi + \eta) + \sigma_A \\
\theta = \frac{1}{2}(\eta - \xi),
\end{cases}$$
(5)

где σ - полусумма главных напряжений $\sigma=\frac{\sigma_1+\sigma_2}{2},\ k$ - согласно условию текучести полуразность главных напряжений $k=\frac{\sigma_1-\sigma_2}{2}$

В переменных Михлина система уравнений (4) преобразуется в систему уравнений с постоянными коэффициентами

$$\begin{cases} \frac{\partial Y}{\partial \eta} - \frac{X}{2} = 0\\ \frac{\partial X}{\partial \xi} - \frac{Y}{2} = 0. \end{cases}$$
 (6)

При этом каждая новая переменная X и Y удовлетворяет телеграфному уравнению [3]

$$\frac{\partial^2 X}{\partial \xi \partial \eta} - \frac{1}{4}X = 0, \qquad \frac{\partial^2 Y}{\partial \xi \partial \eta} - \frac{1}{4}Y = 0. \tag{7}$$

Решение каждого из уравнений (7) ищем в виде [4],[7]

$$G(a, b, \xi, \eta) = I_0 \left(\sqrt{(a - \xi)(b - \eta)} \right),$$

где I_0 - модифицированная функция Бесселя первого рода нулевого порядка Систему (5) представим в виде

$$\begin{cases} \eta - \xi = 2\theta \\ \xi + \eta = \frac{\sigma - \sigma_A}{k} = 0. \end{cases}$$

Вдоль AB $\eta=-\xi=\theta$, то есть в плоскости (ξ,η) линия AB представляет собой прямую $\eta=-\xi$ (рис.2), причем т.к. $-\frac{\pi}{4}\leqslant\theta\leqslant\frac{\pi}{4}$, то $\left\{ \begin{array}{l} -\frac{\pi}{4}\leqslant\xi\leqslant\frac{\pi}{4}\\ -\frac{\pi}{4}\leqslant\eta\leqslant\frac{\pi}{4}. \end{array} \right.$

$$\begin{cases} -\frac{\pi}{4} \leqslant \xi \leqslant \frac{\pi}{4} \\ -\frac{\pi}{4} \leqslant \eta \leqslant \frac{\pi}{4} \end{cases}$$

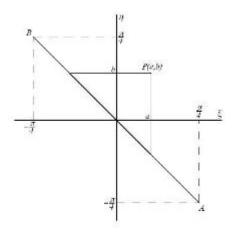


Рис. 2. Отображение физической плоскости в плоскость характеристик $(\xi \eta)$

Решение в произвольной точке P с координатами (a,b) окрестности кривой определяем по формуле Римана [8]

$$X_{P} = \frac{1}{2}(X_{a} + X_{b}) - \frac{1}{2} \int_{\mathcal{A}} \left(G \frac{\partial X}{\partial \xi} - X \frac{\partial G}{\partial \xi} \right) d\xi + \left(X \frac{\partial G}{\partial \eta} - G \frac{\partial X}{\partial \eta} \right) d\eta \tag{8}$$

$$Y_{P} = \frac{1}{2}(Y_{a} + Y_{b}) - \frac{1}{2} \int_{ab} \left(G \frac{\partial Y}{\partial \xi} - Y \frac{\partial G}{\partial \xi} \right) d\xi + \left(Y \frac{\partial G}{\partial \eta} - G \frac{\partial Y}{\partial \eta} \right) d\eta \tag{9}$$

Используя формулы (3) и (6), получим

$$\begin{cases}
\frac{\partial Y}{\partial \eta} = \frac{X}{2} = R \frac{\sqrt{2}}{4} \\
\frac{\partial X}{\partial \xi} = \frac{Y}{2} = R \frac{\sqrt{2}}{4}.
\end{cases} (10)$$

Так как
$$\frac{\partial \eta}{\partial \theta} = 1, \frac{\partial \xi}{\partial \theta} = -1$$
, то из формул
$$\begin{cases} \frac{\partial X}{\partial \theta} = \frac{\partial X}{\partial \xi} \frac{\partial \xi}{\partial \theta} + \frac{\partial X}{\partial \eta} \frac{\partial \eta}{\partial \theta} \\ \frac{\partial Y}{\partial \theta} = \frac{\partial Y}{\partial \xi} \frac{\partial \xi}{\partial \theta} + \frac{\partial Y}{\partial \eta} \frac{\partial \eta}{\partial \theta} \end{cases}$$
найдем $\frac{\partial X}{\partial \eta}, \frac{\partial Y}{\partial \xi}$ вдоль AB , используя (10)

$$\begin{cases} \frac{\partial X}{\partial \eta} = R \frac{\sqrt{2}}{4} \\ \frac{\partial Y}{\partial \xi} = R \frac{\sqrt{2}}{4} \end{cases}.$$

Вдоль AB получили:

$$\begin{cases} X = R\frac{\sqrt{2}}{2} \\ Y = R\frac{\sqrt{2}}{2}, \end{cases} \begin{cases} \frac{\partial X}{\partial \eta} = R\frac{\sqrt{2}}{4} \\ \frac{\partial X}{\partial \xi} = R\frac{\sqrt{2}}{4}, \end{cases} \begin{cases} \frac{\partial Y}{\partial \eta} = R\frac{\sqrt{2}}{4} \\ \frac{\partial Y}{\partial \xi} = R\frac{\sqrt{2}}{4}; \end{cases}$$
$$G(a,b,\xi,\eta) = I_0 \left(\sqrt{(a-\xi)(b-\eta)} \right);$$
$$\frac{\partial G}{\partial \xi} = \frac{I_1 \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} (b-\eta);$$
$$\frac{\partial G}{\partial \eta} = \frac{I_1 \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} (a-\xi);$$

Используя полученные выражения, формула (8) примет вид

$$\begin{split} X_{P} &= R \frac{\sqrt{2}}{2} - \frac{1}{2} \int_{ab} \left[R \frac{\sqrt{2}}{4} I_{0} \left(\sqrt{(a-\xi)(b-\eta)} \right) - R \frac{\sqrt{2}}{2} (b-\eta) \frac{I_{1} \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} \right] d\xi + \\ &+ \left[R \frac{\sqrt{2}}{2} \frac{I_{1} \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} (a-\xi) - R \frac{\sqrt{2}}{4} I_{0} \left(\sqrt{(a-\xi)(b-\eta)} \right) \right] d\eta \\ &X_{P} &= R \frac{\sqrt{2}}{2} - R \frac{\sqrt{2}}{8} \int_{ab} \left(I_{0} \left(\sqrt{(a-\xi)(b-\eta)} \right) \right) (d\xi - d\eta) - \\ &- R \frac{\sqrt{2}}{4} \int_{a}^{b} \frac{I_{1} \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} \left(-(b-\eta) d\xi + (a-\xi) d\eta \right) \end{split}$$

Перейдем от криволинейного интеграла второго рода к определённому интегралу Римана вдоль прямой

$$X_{P} = R \frac{\sqrt{2}}{2} + R \frac{\sqrt{2}}{8} \int_{-b}^{a} \left(2I_{0} \left(\sqrt{(a-\xi)(b+\xi)} \right) \right) d\xi + R \frac{\sqrt{2}}{4} \int_{-b}^{a} \frac{I_{1} \left(\sqrt{(a-\xi)(b+\xi)} \right)}{2\sqrt{(a-\xi)(b+\xi)}} (-(a+b)) d\xi$$
$$X(a,b) = R \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4} Int 1 - \frac{\sqrt{2}}{8} (a+b) Int 2 \right), \tag{11}$$

где

$$Int1 = \int_{-b}^{a} \left(I_0 \left(\sqrt{(a-\xi)(b+\xi)} \right) \right) d\xi$$
$$Int2 = \int_{-b}^{a} \frac{I_1 \left(\sqrt{(a-\xi)(b+\xi)} \right)}{2\sqrt{(a-\xi)(b+\xi)}} d\xi$$

вычислим
$$Int1$$
 и $Int2$. Для этого воспользуемся заменой:
$$\xi = \frac{a-b}{2} + \frac{b+a}{2}\sin(y)$$

$$d\xi = \frac{a+b}{2}\cos(y)dy$$

$$a-\xi = a-\frac{a-b}{2} - \frac{b+a}{2}\sin(y) = \frac{a+b}{2} - \frac{b+a}{2}\sin(y) = \frac{a+b}{2}(1-\sin(y))$$

$$b+\xi = b+\frac{a-b}{2} + \frac{b+a}{2}\sin(y) = \frac{a+b}{2} + \frac{b+a}{2}\sin(y) = \frac{a+b}{2}(1+\sin(y))$$

$$(a-\xi)(b+\xi) = \left(\frac{a+b}{2}\right)^2(1-\sin^2(y))$$

$$\xi = a \to a - \frac{a-b}{2} = \frac{b+a}{2}\sin(y) \to y = \frac{\pi}{2}$$

$$\xi = -b \to -b - \frac{a-b}{2} = \frac{b+a}{2}\sin(y) \to y = -\frac{\pi}{2}$$

$$Int1 = \int_{-b}^a \left(I_0\left(\sqrt{(a-\xi)(b+\xi)}\right)\right) d\xi = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}I_0\left(\frac{a+b}{2}\cos(y)\right)\frac{a+b}{2}\cos(y) dy = \frac{a+b}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}I_0\left(\frac{a+b}{2}\cos(y)\right)\cos(y) dy$$

Так как подинтегральное выражение четное, то

$$Int = (a+b) \int_{0}^{\frac{\pi}{2}} I_0\left(\frac{a+b}{2}\cos(y)\right) \cos(y) \, dy$$

$$\begin{cases} y = \frac{\pi}{2} - t \\ \cos(y) = \cos\left(\frac{\pi}{2} - t\right) = \sin(t) \\ dy = dt, \end{cases} \begin{cases} y = 0 \to t = -\frac{\pi}{2} \\ y = \frac{\pi}{2} \to t = 0. \end{cases}$$

$$Int1 = (a+b) \int_{-\frac{\pi}{2}}^{0} I_0\left(\frac{a+b}{2}\sin(t)\right) \sin(t) \left(-dt\right) = (a+b) \int_{0}^{\frac{\pi}{2}} I_0\left(\frac{a+b}{2}\sin(t)\right) \sin(t) dt = 2 \sinh\left(\frac{a+b}{2}\right) \sin(t) dt$$

Посчитаем Int2:

$$Int2 = \int_{-b}^{a} \frac{I_1\left(\sqrt{(a-\xi)(b+\xi)}\right)}{2\sqrt{(a-\xi)(b+\xi)}} d\xi$$

Воспользуемся аналогичной заменой:

$$\xi = \frac{a-b}{2} + \frac{b+a}{2}\sin(y)d\xi = \frac{a+b}{2}\cos(y)dya - \xi = a - \frac{a-b}{2} - \frac{b+a}{2}\sin(y) =$$

$$= \frac{a+b}{2} - \frac{b+a}{2}\sin(y) = \frac{a+b}{2}(1-\sin(y))b + \xi = b + \frac{a-b}{2} + \frac{b+a}{2}\sin(y) = \frac{a+b}{2} + \frac{b+a}{2}\sin(y) =$$

$$= \frac{a+b}{2}(1+\sin(y))(a-\xi)(b+\xi) = \left(\frac{a+b}{2}\right)^2(1-\sin^2(y))\xi = a \to a - \frac{a-b}{2} = \frac{b+a}{2}\sin(y) \to y =$$

$$= \frac{\pi}{2}\xi = -b \to -b - \frac{a-b}{2} = \frac{b+a}{2}\sin(y) \to y = -\frac{\pi}{2}$$

$$Int2 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{I_1\left(\frac{a+b}{2}\cos(y)\right)}{\frac{a+b}{2}\cos(y)} \frac{a+b}{2}\cos(y) dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} I_1\left(\frac{a+b}{2}\cos(y)\right) dy$$

$$\begin{cases} y = \frac{\pi}{2} - t \\ \cos(y) = \cos\left(\frac{\pi}{2} - t\right) = \sin(t) \end{cases} \begin{cases} y = 0 \to t = -\frac{\pi}{2} \\ y = \frac{\pi}{2} \to t = 0. \end{cases}$$

$$Int2 = 2 \int\limits_{-\frac{\pi}{2}}^{0} I_1\left(\frac{a+b}{2}\sin(t)\right) \, (-dt) = 2 \int\limits_{0}^{\frac{\pi}{2}} I_1\left(\frac{a+b}{2}\sin(t)\right) \, dt = \frac{2-2 \mathop{\mathrm{ch}}\left(\frac{a+b}{2}\right)}{\frac{a+b}{2}}$$

Подставим полученные значения Int1 и Int2 в формулу (11)

$$X(a,b) = R\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4}2\operatorname{sh}\left(\frac{a+b}{2}\right) - \frac{\sqrt{2}}{8}(a+b)\frac{4-4\operatorname{ch}\left(\frac{a+b}{2}\right)}{a+b}\right)$$

$$X(a,b) = R\frac{\sqrt{2}}{2}\left(\operatorname{sh}\left(\frac{a+b}{2}\right) + \operatorname{ch}\left(\frac{a+b}{2}\right)\right) = R\frac{\sqrt{2}}{2}e^{\frac{a+b}{2}}$$

$$X(\xi,\eta) = R\frac{\sqrt{2}}{2}e^{\frac{\xi+\eta}{2}}$$

Для переменной $Y=Y(\xi,\eta)$ проведя аналогичные вычисления, получим идентичную формулу:

$$Y(\xi,\eta) = R \frac{\sqrt{2}}{2} e^{\frac{\xi+\eta}{2}}$$

Из системы (2) выразим x и y и получим параметрические уравнения $x=x(\xi,\eta)$ и $y=y(\xi,\eta)$ в плоскости xOy

$$\left\{ \begin{array}{l} x = X\cos(\theta) - Y\sin(\theta) = R\frac{\sqrt{2}}{2}e^{\frac{\xi+\eta}{2}}\cos(\theta) - R\frac{\sqrt{2}}{2}e^{\frac{\xi+\eta}{2}}\sin(\theta) = Re^{\frac{\xi+\eta}{2}}\cos\left(\theta+\frac{\pi}{4}\right), \\ y = X\sin(\theta) + Y\cos(\theta) = R\frac{\sqrt{2}}{2}e^{\frac{\xi+\eta}{2}}\sin(\theta) + R\frac{\sqrt{2}}{2}e^{\frac{\xi+\eta}{2}}\cos(\theta) = Re^{\frac{\xi+\eta}{2}}\sin\left(\theta+\frac{\pi}{4}\right). \end{array} \right.$$

Подставим значение θ из второго уравнения системы (5)

$$\begin{cases} x = Re^{\frac{\xi+\eta}{2}}\cos\left(\frac{\eta-\xi}{2} + \frac{\pi}{4}\right), \\ y = Re^{\frac{\xi+\eta}{2}}\sin\left(\frac{\eta-\xi}{2} + \frac{\pi}{4}\right). \end{cases}$$
 (12)

Используем известные формулы теории напряжений

$$\begin{cases}
\sigma_x = \sigma - k \sin(2\theta), \\
\sigma_y = \sigma + k \sin(2\theta), \\
\tau_{xy} = k \cos(2\theta).
\end{cases}$$
(13)

Найдём σ и θ . Для этого воспользуемся системами (5) и (12). В (12) сначала разделим первое уравнение на второе, получим

$$\frac{y}{x} = \operatorname{tg}\left(\frac{\eta - \xi}{2} + \frac{\pi}{4}\right),\,$$

$$\eta - \xi = 2 \arctan\left(\frac{y}{x}\right) - \frac{\pi}{2}$$
(14)

Теперь возведём оба уравнения (12) в квадрат и сложим

$$x^2 + y^2 = R^2 e^{\xi + \eta} \cos^2 \left(\frac{\eta - \xi}{2} + \frac{\pi}{4} \right) + R^2 e^{\xi + \eta} \sin^2 \left(\frac{\eta - \xi}{2} + \frac{\pi}{4} \right), x^2 + y^2 = R^2 e^{\xi + \eta},$$

$$\xi + \eta = \ln\left(\frac{x^2 + y^2}{R^2}\right) \tag{15}$$

 σ_A определим из граничных условий [3]

$$\sigma_A = \sigma_n + k \sin 2(\theta - t),$$

$$\sigma_A = -p - k \tag{16}$$

Подставим (14),(15) и (16) в (5)

$$\begin{cases} \sigma = k \ln\left(\frac{x^2 + y^2}{R^2}\right) - p - k \\ \theta = \arctan\left(\frac{y}{x}\right) - \frac{\pi}{4}, \end{cases}$$

Подставим полученные σ и θ в систему (13)

$$\begin{cases}
\sigma_x = k \ln\left(\frac{x^2 + y^2}{R^2}\right) - p - k - k \sin\left(2 \arctan\left(\frac{y}{x}\right) - \frac{\pi}{2}\right), \\
\sigma_y = k \ln\left(\frac{x^2 + y^2}{R^2}\right) - p - k + k \sin\left(2 \arctan\left(\frac{y}{x}\right) - \frac{\pi}{2}\right), \\
\tau_{xy} = k \cos\left(2 \arctan\left(\frac{y}{x}\right) - \frac{\pi}{2}\right).
\end{cases} (17)$$

Перейдем в системе (17) к полярным координатам

$$\begin{cases} x = r\cos(\varphi), & x^2 + y^2 = r^2, \ln\left(\frac{x^2 + y^2}{R^2}\right) = 2\ln\left(\frac{r}{R}\right), \frac{y}{x} = tg(\varphi), 2\arctan\left(\frac{y}{x}\right) - \frac{\pi}{2} = 2\varphi - \frac{\pi}{2} \\ \begin{cases} \sigma_x = 2k\ln\left(\frac{r}{R}\right) - p - k - k\sin\left(2\varphi - \frac{\pi}{2}\right), \\ \sigma_y = 2k\ln\left(\frac{r}{R}\right) - p - k + k\sin\left(2\varphi - \frac{\pi}{2}\right), \\ \sigma_y = 2k\ln\left(\frac{r}{R}\right) - p - k + k\sin\left(2\varphi - \frac{\pi}{2}\right), \\ \tau_{xy} = k\cos\left(2\varphi - \frac{\pi}{2}\right); \end{cases} \begin{cases} \sigma_x = 2k\ln\left(\frac{r}{R}\right) - p - k + k\cos\left(2\varphi\right), \\ \sigma_y = 2k\ln\left(\frac{r}{R}\right) - p - k - k\cos\left(2\varphi\right), \\ \tau_{xy} = k\sin\left(2\varphi\right). \end{cases}$$

$$\begin{cases} \sigma_r = \sigma_x \cos^2(\varphi) + \sigma_y \sin^2(\varphi) + \tau_{xy} \sin(2\varphi), \\ \sigma_\varphi = \sigma_x \sin^2(\varphi) + \sigma_y \cos^2(\varphi) - \tau_{xy} \sin(2\varphi), \\ \tau_{r\varphi} = \tau_{xy} \cos(2\varphi) - \frac{\sigma_x - \sigma_y}{2} \sin(2\varphi); \end{cases}$$

$$\sigma_r = \left(2k\ln\left(\frac{r}{R}\right) - p - k + k\cos\left(2\varphi\right)\right)\cos^2(\varphi) + \left(2k\ln\left(\frac{r}{R}\right) - p - k - k\cos\left(2\varphi\right)\right)\sin^2(\varphi) + k\sin\left(2\varphi\right)\sin\left(2\varphi\right) = 2k\ln\left(\frac{r}{R}\right) - p - k + k\left(\cos^2(2\varphi) + \sin^2(2\varphi)\right),$$

$$\sigma_r = 2k\ln\left(\frac{r}{R}\right) - p$$

$$\sigma_{\varphi} = \left(2k \ln\left(\frac{r}{R}\right) - p - k + k \cos\left(2\varphi\right)\right) \sin^{2}(\varphi) + \left(2k \ln\left(\frac{r}{R}\right) - p - k - k \cos\left(2\varphi\right)\right) \cos^{2}(\varphi) - k \sin\left(2\varphi\right) \sin(2\varphi) = 2k \ln\left(\frac{r}{R}\right) - p - k - k \left(\cos^{2}(2\varphi) + \sin^{2}(2\varphi)\right),$$

$$\sigma_{\varphi} = 2k \ln\left(\frac{r}{R}\right) - p - 2k$$

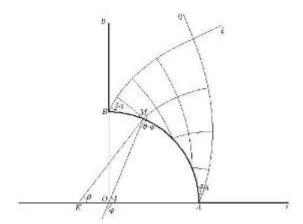
Найденные решения σ_r и σ_{φ} методом Римана совпадают с представленными в [3], [7].

Решим теперь эту задачу считая, что вдоль кривой AB действуют касательные напряжения [9]

$$\tau_n = k \sin(2\delta), |\delta| \leqslant \frac{\pi}{4}.$$

Уравнения окружности в параметрическом виде

$$\begin{cases} x = R\cos(t) \\ y = R\sin(t) \\ 0 \leqslant t \leqslant \frac{\pi}{2}. \end{cases}$$



 ${
m Puc.~3.~ Cet}$ ка линий скольжения, построенная на части окружности, при наличии постоянного трения

Согласно работе [3] параметр t зависит от угла θ в виде $t=\theta+\frac{\pi}{4}-\delta$ и параметрические уравнения кривой AB примут вид

$$\begin{cases} x = R\cos(\theta + \frac{\pi}{4} - \delta) \\ y = R\sin(\theta + \frac{\pi}{4} - \delta) \\ -\frac{\pi}{4} + \delta \leqslant \theta \leqslant \frac{\pi}{4} + \delta. \end{cases}$$
 (18)

Перейдем к переменным Михлина (2):

$$\begin{cases}
X = R\cos\left(\theta + \frac{\pi}{4} - \delta\right)\cos(\theta) + R\sin\left(\theta + \frac{\pi}{4} - \delta\right)\sin(\theta) = R\cos\left(\frac{\pi}{4} - \delta\right), \\
Y = -R\cos\left(\theta + \frac{\pi}{4} - \delta\right)\sin(\theta) + R\sin\left(\theta + \frac{\pi}{4} - \delta\right)\cos(\theta) = R\sin\left(\frac{\pi}{4} - \delta\right).
\end{cases} (19)$$

Из (6) и (19) получаем:

$$\begin{cases}
\frac{\partial Y}{\partial \eta} = \frac{X}{2} = \frac{R}{2} \cos\left(\frac{\pi}{4} - \delta\right) \\
\frac{\partial X}{\partial \xi} = \frac{Y}{2} = \frac{R}{2} \sin\left(\frac{\pi}{4} - \delta\right).
\end{cases} (20)$$

Систему (5) представим в виде

$$\begin{cases} \eta - \xi = 2\theta \\ \xi + \eta = \frac{\sigma - \sigma_A}{k} = 0. \end{cases}$$

Вдоль AB $\eta=-\xi=\theta$, то есть в плоскости (ξ,η) линия AB представляет собой прямую $\eta=-\xi$ (рис.4), причем т.к. $-\frac{\pi}{4}+\delta\leqslant\theta\leqslant\frac{\pi}{4}+\delta$, то

$$\begin{cases} -\frac{\pi}{4} - \delta \leqslant \xi \leqslant \frac{\pi}{4} - \delta \\ -\frac{\pi}{4} + \delta \leqslant \eta \leqslant \frac{\pi}{4} + \delta. \end{cases}$$

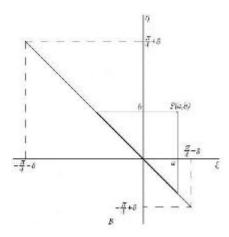


Рис. 4. Отображение физической плоскости в плоскость характеристик $(\xi\eta)$, при наличии постоянного трения

Так как
$$\frac{\partial \eta}{\partial \theta} = 1$$
, $\frac{\partial \xi}{\partial \theta} = -1$, то из формул
$$\left\{ \begin{array}{l} \frac{\partial X}{\partial \theta} = \frac{\partial X}{\partial \xi} \frac{\partial \xi}{\partial \theta} + \frac{\partial X}{\partial \eta} \frac{\partial \eta}{\partial \theta} \\ \frac{\partial Y}{\partial \theta} = \frac{\partial Y}{\partial \xi} \frac{\partial \xi}{\partial \theta} + \frac{\partial Y}{\partial \eta} \frac{\partial \eta}{\partial \theta} \end{array} \right.$$
 найдем $\frac{\partial X}{\partial \eta}$, $\frac{\partial Y}{\partial \xi}$ вдоль

AB, используя (20)

$$\left\{ \begin{array}{l} \frac{\partial X}{\partial \eta} = \frac{R}{2} \sin \left(\frac{\pi}{4} - \delta \right) \\ \frac{\partial Y}{\partial \mathcal{E}} = \frac{R}{2} \cos \left(\frac{\pi}{4} - \delta \right). \end{array} \right.$$

Вдоль AB получили:

$$\begin{cases} X = R\cos\left(\frac{\pi}{4} - \delta\right) \\ Y = R\sin\left(\frac{\pi}{4} - \delta\right), \end{cases} \begin{cases} \frac{\partial X}{\partial \eta} = \frac{R}{2}\sin\left(\frac{\pi}{4} - \delta\right) \\ \frac{\partial X}{\partial \xi} = \frac{R}{2}\sin\left(\frac{\pi}{4} - \delta\right), \end{cases} \begin{cases} \frac{\partial Y}{\partial \eta} = \frac{R}{2}\cos\left(\frac{\pi}{4} - \delta\right) \\ \frac{\partial Y}{\partial \xi} = \frac{R}{2}\cos\left(\frac{\pi}{4} - \delta\right); \end{cases}$$
$$G(a, b, \xi, \eta) = I_0\left(\sqrt{(a - \xi)(b - \eta)}\right);$$
$$\frac{\partial G}{\partial \xi} = \frac{I_1\left(\sqrt{(a - \xi)(b - \eta)}\right)}{2\sqrt{(a - \xi)(b - \eta)}}(b - \eta);$$
$$\frac{\partial G}{\partial \eta} = \frac{I_1\left(\sqrt{(a - \xi)(b - \eta)}\right)}{2\sqrt{(a - \xi)(b - \eta)}}(a - \xi);$$

Используя полученные выражения, формула (8) примет вид

$$X_P = R\cos\left(\frac{\pi}{4} - \delta\right) - \frac{1}{2} \int_{ab} \left[\frac{R}{2} \sin\left(\frac{\pi}{4} - \delta\right) I_0\left(\sqrt{(a-\xi)(b-\eta)}\right) - R\cos\left(\frac{\pi}{4} - \delta\right) (b-\eta) \frac{I_1\left(\sqrt{(a-\xi)(b-\eta)}\right)}{2\sqrt{(a-\xi)(b-\eta)}} \right] d\xi +$$

$$+ \left[R \cos \left(\frac{\pi}{4} - \delta \right) \frac{I_1 \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} (a-\xi) - \frac{R}{2} \sin \left(\frac{\pi}{4} - \delta \right) I_0 \left(\sqrt{(a-\xi)(b-\eta)} \right) \right] d\eta$$

$$X_P = R \cos \left(\frac{\pi}{4} - \delta \right) - \frac{R}{4} \sin \left(\frac{\pi}{4} - \delta \right) \int_{ab} \left(I_0 \left(\sqrt{(a-\xi)(b-\eta)} \right) \right) (d\xi - d\eta) -$$

$$- \frac{R}{2} \cos \left(\frac{\pi}{4} - \delta \right) \int_{ab} \frac{I_1 \left(\sqrt{(a-\xi)(b-\eta)} \right)}{2\sqrt{(a-\xi)(b-\eta)}} \left(-(b-\eta)d\xi + (a-\xi)d\eta \right)$$

Перейдем от криволинейного интеграла второго рода к определённому интегралу Римана вдоль прямой

$$X(a,b) = R\cos\left(\frac{\pi}{4} - \delta\right) + \frac{R}{2}\sin\left(\frac{\pi}{4} - \delta\right) \int_{-b}^{a} \left(I_0\left(\sqrt{(a-\xi)(b+\xi)}\right)\right) d\xi + \frac{R}{2}\cos\left(\frac{\pi}{4} - \delta\right) \int_{-b}^{a} \frac{I_1\left(\sqrt{(a-\xi)(b+\xi)}\right)}{2\sqrt{(a-\xi)(b+\xi)}} (-(a+b)) d\xi$$

$$X(a,b) = R\left(\cos\left(\frac{\pi}{4} - \delta\right) + \frac{1}{2}\sin\left(\frac{\pi}{4} - \delta\right)Int1 - \frac{1}{4}\cos\left(\frac{\pi}{4} - \delta\right)(a+b)Int2\right), \tag{21}$$

где

$$Int1 = \int_{-b}^{a} \left(I_0 \left(\sqrt{(a-\xi)(b+\xi)} \right) \right) d\xi$$
$$Int2 = \int_{-b}^{a} \frac{I_1 \left(\sqrt{(a-\xi)(b+\xi)} \right)}{2\sqrt{(a-\xi)(b+\xi)}} d\xi$$

Int1 и Int2 были подсчитаны выше:

$$Int1 = 2 \operatorname{sh}\left(\frac{a+b}{2}\right),$$

$$Int2 = \frac{2 - 2\operatorname{ch}\left(\frac{a+b}{2}\right)}{\frac{a+b}{2}}.$$

Получаем:

$$X(a,b) = R\left[\cos\left(\frac{\pi}{4} - \delta\right) + \sin\left(\frac{\pi}{4} - \delta\right) \operatorname{sh}\left(\frac{a+b}{2}\right) - \cos\left(\frac{\pi}{4} - \delta\right) \left(2 - 2\operatorname{ch}\left(\frac{a+b}{2}\right)\right)\right],$$

$$X(a,b) = R\left[\sin\left(\frac{\pi}{4} - \delta\right) \operatorname{sh}\left(\frac{a+b}{2}\right) + \cos\left(\frac{\pi}{4} - \delta\right) \operatorname{ch}\left(\frac{a+b}{2}\right)\right].$$

Для переменной Y = Y(a, b) проведя аналогичные вычисления, получим:

$$Y(a,b) = R\left[\cos\left(\frac{\pi}{4} - \delta\right) \operatorname{sh}\left(\frac{a+b}{2}\right) + \sin\left(\frac{\pi}{4} - \delta\right) \operatorname{ch}\left(\frac{a+b}{2}\right)\right]$$

Из системы (2) выразим x и y и получим параметрические уравнения x=x(a,b) и y=y(a,b) в плоскости xOy

$$\begin{cases} x = X \cos(\theta) - Y \sin(\theta), \\ y = X \sin(\theta) + Y \cos(\theta); \end{cases}$$

$$\begin{cases} x = R \left[\sin \left(\frac{\pi}{4} - \delta \right) \operatorname{sh} \left(\frac{a+b}{2} \right) + \cos \left(\frac{\pi}{4} - \delta \right) \operatorname{ch} \left(\frac{a+b}{2} \right) \right] \cos(\theta) - \\ -R \left[\cos \left(\frac{\pi}{4} - \delta \right) \operatorname{sh} \left(\frac{a+b}{2} \right) + \sin \left(\frac{\pi}{4} - \delta \right) \operatorname{ch} \left(\frac{a+b}{2} \right) \right] \sin(\theta), \\ y = R \left[\sin \left(\frac{\pi}{4} - \delta \right) \operatorname{sh} \left(\frac{a+b}{2} \right) + \cos \left(\frac{\pi}{4} - \delta \right) \operatorname{ch} \left(\frac{a+b}{2} \right) \right] \sin(\theta) + \\ +R \left[\cos \left(\frac{\pi}{4} - \delta \right) \operatorname{sh} \left(\frac{a+b}{2} \right) + \sin \left(\frac{\pi}{4} - \delta \right) \operatorname{ch} \left(\frac{a+b}{2} \right) \right] \cos(\theta); \end{cases}$$

$$\begin{cases} x = R \left[\operatorname{sh} \left(\frac{a+b}{2} \right) \operatorname{sin} \left(\frac{\pi}{4} - \delta - \theta \right) + \operatorname{ch} \left(\frac{a+b}{2} \right) \operatorname{cos} \left(\frac{\pi}{4} - \delta + \theta \right) \right], \\ y = R \left[\operatorname{sh} \left(\frac{a+b}{2} \right) \operatorname{cos} \left(\frac{\pi}{4} - \delta - \theta \right) + \operatorname{ch} \left(\frac{a+b}{2} \right) \operatorname{sin} \left(\frac{\pi}{4} - \delta + \theta \right) \right]; \end{cases}$$

$$\begin{cases} x = R \left[\operatorname{sh} \left(\frac{\xi + \eta}{2} \right) \operatorname{sin} \left(\frac{\pi}{4} - \delta - \frac{\eta - \xi}{2} \right) + \operatorname{ch} \left(\frac{\xi + \eta}{2} \right) \operatorname{cos} \left(\frac{\pi}{4} - \delta + \frac{\eta - \xi}{2} \right) \right], \\ y = R \left[\operatorname{sh} \left(\frac{\xi + \eta}{2} \right) \operatorname{cos} \left(\frac{\pi}{4} - \delta - \frac{\eta - \xi}{2} \right) + \operatorname{ch} \left(\frac{\xi + \eta}{2} \right) \operatorname{sin} \left(\frac{\pi}{4} - \delta + \frac{\eta - \xi}{2} \right) \right]; \end{cases}$$
(22)

Найдём σ и θ . Для этого воспользуемся системами (5) и (22). В (22) возведём оба уравнения в квадрат и сложим, получим

$$x^{2} + y^{2} = R^{2} \left[\operatorname{sh}^{2} \left(\frac{\xi + \eta}{2} \right) + \operatorname{ch}^{2} \left(\frac{\xi + \eta}{2} \right) + 2 \operatorname{ch} \left(\frac{\xi + \eta}{2} \right) \operatorname{sh} \left(\frac{\xi + \eta}{2} \right) \operatorname{sin} \left(\frac{\pi}{2} - \delta \right) \right],$$
$$x^{2} + y^{2} = R^{2} \left[\operatorname{sh}(\xi + \eta) + \cos \delta \operatorname{ch}(\xi + \eta) \right].$$

Воспользовавшись системой Maple получаем решение

$$\xi + \eta = \ln \left(\frac{x^2 + y^2 + \sqrt{x^4 + 2x^2y^2 + y^4 + R^4 - R^4 \cos^2 \delta}}{R^2 (1 + \cos \delta)} \right)$$
 (23)

Преобразуем систему (22), сделав замену $\frac{\xi+\eta}{2}=\alpha, \frac{\eta-\xi}{2}=\beta$ и учитывая что

$$\sin\left(\frac{\pi}{4} - \delta - \frac{\eta - \xi}{2}\right) = \sin\left(\frac{\pi}{2} - \left(\frac{\pi}{4} + \delta + \frac{\eta - \xi}{2}\right)\right) = \cos\left(\frac{\pi}{4} + \delta + \frac{\eta - \xi}{2}\right),$$

$$x = R\left[\frac{e^{\alpha} - e^{-\alpha}}{2}\cos\left(\frac{\pi}{4} + \delta + \beta\right) + \frac{e^{\alpha} + e^{-\alpha}}{2}\cos\left(\frac{\pi}{4} - \delta + \beta\right)\right],$$

$$x = \frac{Re^{\alpha}}{2}\left[\cos\left(\frac{\pi}{4} + \delta + \beta\right) + \cos\left(\frac{\pi}{4} - \delta + \beta\right)\right] + \frac{Re^{-\alpha}}{2}\left[\cos\left(\frac{\pi}{4} - \delta + \beta\right) - \cos\left(\frac{\pi}{4} + \delta + \beta\right)\right],$$

$$x = Re^{\alpha}\cos\delta\cos\left(\frac{\pi}{4} + \beta\right) - Re^{-\alpha}\sin\delta\sin\left(\frac{\pi}{4} + \beta\right)$$

$$y = \frac{Re^{\alpha}}{2} \left[\cos \left(\frac{\pi}{4} - \delta - \beta \right) + \cos \left(\frac{\pi}{4} + \delta - \beta \right) \right] + \frac{Re^{-\alpha}}{2} \left[\cos \left(\frac{\pi}{4} + \delta - \beta \right) - \cos \left(\frac{\pi}{4} - \delta - \beta \right) \right],$$
$$y = Re^{\alpha} \cos \delta \cos \left(\frac{\pi}{4} - \beta \right) - Re^{-\alpha} \sin \delta \sin \left(\frac{\pi}{4} - \beta \right)$$

Получили новую систему, где $2\alpha=\xi+\eta$

$$\begin{cases} x = Re^{\alpha} \cos \delta \cos \left(\frac{\pi}{4} + \beta\right) - Re^{-\alpha} \sin \delta \sin \left(\frac{\pi}{4} + \beta\right), \\ y = Re^{\alpha} \cos \delta \cos \left(\frac{\pi}{4} - \beta\right) - Re^{-\alpha} \sin \delta \sin \left(\frac{\pi}{4} - \beta\right), \end{cases}$$

Подставив (23), получаем

$$\begin{cases} x = RA\cos\delta\cos\left(\frac{\pi}{4} + \beta\right) - \frac{R\sin\delta\sin\left(\frac{\pi}{4} + \beta\right)}{A}, \\ y = RA\cos\delta\cos\left(\frac{\pi}{4} - \beta\right) - \frac{R\sin\delta\sin\left(\frac{\pi}{4} - \beta\right)}{A}, \end{cases}$$

где
$$A=\sqrt{\frac{x^2+y^2+\sqrt{x^4+2x^2y^2+y^4+R^4-R^4\cos^2\delta}}{R^2(1+\cos\delta)}}$$

$$\begin{cases} RA\cos\delta = \frac{x}{\cos\left(\frac{\pi}{4} + \beta\right)} + \frac{R\sin\delta\operatorname{tg}\left(\frac{\pi}{4} + \beta\right)}{A}, \\ RA\cos\delta = \frac{y}{\cos\left(\frac{\pi}{4} - \beta\right)} + \frac{R\sin\delta\operatorname{tg}\left(\frac{\pi}{4} - \beta\right)}{A}, \end{cases}$$

$$\frac{x}{\cos\left(\frac{\pi}{4}+\beta\right)} + \frac{R\sin\delta\operatorname{tg}\left(\frac{\pi}{4}+\beta\right)}{A} = \frac{y}{\cos\left(\frac{\pi}{4}-\beta\right)} + \frac{R\sin\delta\operatorname{tg}\left(\frac{\pi}{4}-\beta\right)}{A},$$

$$\frac{x}{\cos\left(\frac{\pi}{4}+\beta\right)} - \frac{y}{\cos\left(\frac{\pi}{4}-\beta\right)} = -\frac{R\sin\delta\sin2\beta}{A\cos\left(\frac{\pi}{4}-\beta\right)\cos\left(\frac{\pi}{4}+\beta\right)},$$

$$x\cos\left(\frac{\pi}{4}-\beta\right) - y\cos\left(\frac{\pi}{4}+\beta\right) = -\frac{R\sin\delta\sin2\beta}{A},$$

$$x\sqrt{\frac{1+\cos\left(\frac{\pi}{2}-2\beta\right)}{2}} - y\sqrt{\frac{1+\cos\left(\frac{\pi}{2}+2\beta\right)}{2}} = -\frac{R\sin\delta\sin2\beta}{A},$$

$$(B^2 - xy)\sin^22\beta + \frac{x^2 - y^2}{2}\sin2\beta - \frac{(x+y)^2}{2} = 0,$$

где $B = \frac{R\sin\delta}{A}$.

Из последнего уравнения находим β

$$2\beta = \arcsin\left(\frac{(x-y)(x+y+\sqrt{x^2+2xy+y^2+4B^2-4xy})}{2(B^2-xy)}\right)$$

Получаем формулу (5) в виде

$$\begin{cases} \sigma = k \ln \left(\frac{x^2 + y^2 + \sqrt{x^4 + 2x^2y^2 + y^4 + R^4 - R^4 \cos^2 \delta}}{R^2 (1 + \cos \delta)} \right) - p - k, \\ \theta = \frac{1}{2} \arcsin \left(\frac{(x - y)(x + y + \sqrt{x^2 + 2xy + y^2 + 4B^2 - 4xy})}{2(B^2 - xy)} \right), \end{cases}$$

где
$$B^2=rac{R^4\sin^2\delta(1+\cos\delta)}{x^2+y^2+\sqrt{x^4+2x^2y^2+y^4+R^4-R^4\cos^2\delta}}$$

Подставим полученные значения в (13)

$$\begin{cases} \sigma_x = k \ln \left(\frac{x^2 + y^2 + \sqrt{(x^2 + y^2)^2 + R^4 \sin^2 \delta}}{R^2 (1 + \cos \delta)} \right) - p - k - \\ -k \frac{(x - y)(x + y + \sqrt{(x - y)^2 + 4B^2})}{2(B^2 - xy)}, \\ \sigma_y = k \ln \left(\frac{x^2 + y^2 + \sqrt{(x^2 + y^2)^2 + R^4 \sin^2 \delta}}{R^2 (1 + \cos \delta)} \right) - p - k + \\ +k \frac{(x - y)(x + y + \sqrt{(x - y)^2 + 4B^2})}{2(B^2 - xy)}, \\ \tau_{xy} = k \frac{\sqrt{4(B^2 - xy)^2 - (x - y)^2 (x + y + \sqrt{(x - y)^2 + 4B^2})^2}}{2(B^2 - xy)} \end{cases}$$

Перейдём к полярным координатам. Введём замену $x=r\cos\varphi,y=r\sin\varphi$ и воспользуемся формулами

$$\begin{cases} \sigma_r = \sigma_x \cos^2(\varphi) + \sigma_y \sin^2(\varphi) + \tau_{xy} \sin(2\varphi), \\ \sigma_\varphi = \sigma_x \sin^2(\varphi) + \sigma_y \cos^2(\varphi) - \tau_{xy} \sin(2\varphi), \\ \tau_{r\varphi} = \tau_{xy} \cos(2\varphi) - \frac{\sigma_x - \sigma_y}{2} \sin(2\varphi). \end{cases}$$

Получим

$$\begin{cases} \sigma_r = k \ln \left(\frac{r^2 + \sqrt{(r^4 + R^4 \sin^2 \delta)}}{R^2 (1 + \cos \delta)} \right) - p - k + \\ + \frac{k \sin(2\varphi) \sqrt{(2B^2 - r^2 \sin 2\varphi)^2 - r^2 (1 - \sin 2\varphi)(2r^2 + 4B^2 + 2r(\cos \varphi + \sin \varphi) \sqrt{r^2 (1 - \sin 2\varphi) + 4B^2}}{2B^2 - r^2 \sin 2\varphi}, \\ \sigma_\varphi = k \ln \left(\frac{r^2 + \sqrt{(r^4 + R^4 \sin^2 \delta)}}{R^2 (1 + \cos \delta)} \right) - p - k - \\ - \frac{k \sin(2\varphi) \sqrt{(2B^2 - r^2 \sin 2\varphi)^2 - r^2 (1 - \sin 2\varphi)(2r^2 + 4B^2 + 2r(\cos \varphi + \sin \varphi) \sqrt{r^2 (1 - \sin 2\varphi) + 4B^2}}}{2B^2 - r^2 \sin 2\varphi}, \\ \tau_{r\varphi} = \frac{k \cos(2\varphi) \sqrt{(2B^2 - r^2 \sin 2\varphi)^2 - r^2 (1 - \sin 2\varphi)(2r^2 + 4B^2 + 2r(\cos \varphi + \sin \varphi) \sqrt{r^2 (1 - \sin 2\varphi) + 4B^2}}}{2B^2 - r^2 \sin 2\varphi} + \frac{k \sin(2\varphi) r^2 \cos 2\varphi + r(\cos \varphi - \sin \varphi) \sqrt{r^2 (1 - \sin 2\varphi) + 4B^2}}}{2B^2 - r^2 \sin 2\varphi}. \end{cases}$$

ЛИТЕРАТУРА

- [1] Ивлев, Д. Д. Метод возмущений в теории упругопластического тела / Д. Д. Ивлев, Л. В. Ершов. М. : Наука, 1978. 208 с.
 - [2] $\mathit{Ивлев}$, $\mathit{Д}$. $\mathit{Д}$. Теория идеальной пластичности / $\mathit{Д}$. $\mathit{Д}$. $\mathit{Ивлев}$. M . : Наука, 1966. 136 с.
- [3] *Качанов*, Л. М. Основы теории пластичности / Л. М. Качанов. М. : Наука, 1969. 420 с.

- [4] *Кошляков*, *Н. С.* Уравнения в частных производных математической физики / Н. С. Кошляков, Э. Б. Глинер, М. М. Смирнов. М. : Высш. шк., 1970. 710 с.
- [5] Соколовский, В. В. Теория пластичности / В. В. Соколовский. М. : Высш. шк., 1969. 608 с.
- [6] Tuxonos, А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. М. : Наука, 1966. 724 с.
- [7] Φ рейденталь, A. Математические теории неупругой сплошной среды / A. Фрейденталь, X. Гейрингер. M. : Φ изматгиз, 1962. 432 с.
 - [8] Хилл, Р. Математическая теория пластичности / Р. Хилл. М.: Наука, 1956. 408 с.
- [9] $\mbox{\it Чеботарёв}, A. C.$ Интегрирование уравнений плоской деформации одной задачи теории идеальной пластичности / А. С. Чеботарёв // Вестник ВГУ. Серия: Физика. Математика. 2007. № 2.

APPLICATION OF RIEMANN METHOD IN FLAT STRAIN THEORY OF IDEAL PLASTICITY WITH A CIRCULAR BOUNDARY

I. N. Zinovyev, A. S. Chebotarev

Voronezh State University

Abstract. The paper considers the derivation of sliding line equation by Riemann method for the flat deformation problem in the ideal plasticity theory with the bound-ary in the form of a quarter of a circle. Solutions for cases both with the boundary friction and without the latter are given in the parametric form.

Keywords: sliding line, Riemann method, plasticity, exact solutions, tensions, yield strength.

Зиновьев Илья Николаевич

студент 3 курса факультета ПММ Воронежского государственного университета, г. Воронеж

e-mail: bekiz@email.ru

Чеботарёв Андрей Сергеевич

кандидат физико-математических наук, доцент Воронежского государственного университета, г. Воронеж

e-mail: xeba@amm.vsu.ru

Zinovyev Ilya Nikolaevich

Student, Department of Teoretical and Applied Mechanics, Voronezh State University, Voronezh

Chebotarev Andrey Sergeevich

Ph.D., Assoc. Professor, Department of Teoretical and Applied Mechanics, Voronezh State University, Voronezh