Д. Д. Ивлев, Р. И. Непершин

ДАВЛЕНИЕ ПЛОСКОГО ШТАМПА НА ОРТОТРОПНОЕ ИДЕАЛЬНО ПЛАСТИЧЕСКОЕ ПОЛУПРОСТРАНСТВО

Чувашский государственный педагогический университет им. И. Я. Яковлева

Московский государственный технологический университет "Станкин"

Аннотация. Рассматривается задача о давлении плоского штампа на ортотропное идеально пластическое полупространство. Зависимость напряжения текучести от направления главного напряжения задается эллипсоидом анизотропии. Угловая точка штампа и прямолинейная граница полупространства порождают центрированный веер прямолинейных характеристик, как и в случае изотропного тела, с аналогичной кинематикой пластического течения. Но давление на штамп существенно зависит от пластической анизотропии.

Ключевые слова: идеальная пластичность, плоская задача, ортотропное полупространство, эллипсоид анизотропии, давление плоского штампа.

УДК: 539.374

Анизотропия пластических свойств материала, проявляющаяся в зависимости напряжения текучести от направления, существенно влияет на несущую способность деталей машин и элементов конструкций при контактных нагрузках. Анизотропия может быть как результатом технологии обработки металлов, создающей направленную текстуру, например, после многопереходной прокатки заготовок или направленной кристаллизации слитков, так и результатом естественного волокнистого строения материала.

Анизотропия тонкого листа, полученного прокаткой, существенно влияет на предельную пластичность до разрушения в технологических операциях вытяжки тонкостенных оболочек. Методы экспериментального исследования пластической потери устойчивости при сложной вытяжке с использованием модифицированного квадратичного условия пластичности Мизеса для ортотропного материала [1] приведены в [2]. Нормальная анизотропия по толщине листа с модифицированным условием пластичности Мизеса и ассоциированным законом течения использовалась в [3] при моделировании пластического обжима тонкостенной трубы с учетом изменения толщины стенки.

Теоретические исследования моделей идеальной пластичности ортотропных материалов с использованием модифицированного квадратичного условия пластичности Мизеса [1] приведены в [4-6]. Общие соотношения двумерных задач для неоднородного сжимаемого анизотропного идеально пластического тела при условии полной пластичности приведены в [7]. Задача о вдавливании жесткой четырехгранной пирамиды в анизотропное идеально пластическое полупространство при квадратичном условии пластичности [1] решается методом малого параметра в [8].

1. В настоящей работе рассматривается идеально пластическая анизотропия при условии полной пластичности [9]. В случае пространственной анизотропии напряжение текучести

Поступила 10.05.2010

представим радиусом-вектором σ_s , в декартовых координатах x, y, z модуль которого σ_s определяется направляющими косинусами n_1, n_2, n_3 с осями координат x, y и z. Если главные оси анизотропии ортотропного тела совпадают с направлениями осей x, y и z, то пространственную идеально пластическую анизотропию можно представить эллипсоидом анизотропии в виде

$$\frac{\sigma_{sx}^2}{\sigma_{s1}^2} + \frac{\sigma_{sy}^2}{\sigma_{s2}^2} + \frac{\sigma_{sz}^2}{\sigma_{s3}^2} = 1,$$
(1)

где σ_{s1} , σ_{s2} , σ_{s3} – значения напряжения текучести при одноосном растяжении-сжатии вдоль главных осей анизотропии; σ_{sx} , σ_{sy} , σ_{sz} – проекции вектора σ_s на направления осей координат, определяемые направляющими косинусами n_1 , n_2 , n_3 . Модуль напряжения текучести определяется формулой

$$\sigma_s = \sqrt{\sigma_{sx}^2 + \sigma_{sy}^2 + \sigma_{sz}^2} \tag{2}$$

В случае изотропного тела эллипсоид анизотропии (1) представляет сферу с постоянным радиусом σ_s , не зависящим от направления.

Рассмотрим плоскую деформацию ортотропного тела в плоскости x, y. При плоской деформации эллипсоид анизотропии (1) изображается эллипсом на плоскости x, y с полуосями σ_{s1} и σ_{s2} по направлениям осей x и y. Напряжение текучести σ_s при параметрическом представлении эллипса с помощью угла наклона θ первого главного напряжения с осью x имеет вид

$$\sigma_s(\theta) = \sqrt{\sigma_{s1}^2 \cos^2 \theta + \sigma_{s2}^2 \sin^2 \theta}.$$
(3)

Направляющие косинусы определяются формулами

$$n_1 = \cos\theta, \quad n_2 = \sin\theta, \quad n_3 = 0 \tag{4}$$

Отличные от нуля компоненты тензора напряжений при условии полной пластичности [9] принимают вид

$$\sigma_x = \sigma - k + 2k\cos^2\theta, \quad \sigma_y = \sigma - k + 2k\sin^2\theta, \quad \tau_{xy} = k\sin 2\theta, \tag{5}$$

$$\sigma_z = \sigma - k, \quad \sigma = (\sigma_x + \sigma_y)/2, \quad k = \sigma_s/2. \tag{6}$$

Уравнения (5) удовлетворяют квадратичному условию пластичности при плоской деформации

$$(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2 = \sigma_s^2(\theta) \tag{7}$$

с напряжением текучести σ_s , зависящим от направления первого главного напряжения для эллипса анизотропии по формуле (3).

Введем угол φ между осью x и максимальным касательным напряжением $\varphi = \theta - \pi/4$. Замена угла θ на угол φ приводит уравнения (3) и (5) к виду

$$\sigma_s(\varphi) = \frac{1}{\sqrt{2}} \sqrt{\sigma_{s1}^2 + \sigma_{s2}^2 + (\sigma_{s1}^2 - \sigma_{s2}^2) \sin 2\varphi},$$
(8)

$$\sigma_x = \sigma - k \sin 2\varphi, \sigma_y = \sigma + k \sin 2\varphi, \tau_{xy} = k \cos 2\varphi.$$
(9)

Подстановка напряжений (9) в дифференциальные уравнения равновесия плоской задачи приводит к гиперболической системе уравнений относительно переменных σ и φ с ортогональными характеристиками ξ и η с углами наклона α и β к оси x

$$\operatorname{tg} \alpha = f_1(\varphi) + f_2(\varphi), \quad \operatorname{tg} \beta = f_1(\varphi) - f_2(\varphi), \tag{10}$$

$$f_1 = \frac{k'\sin 2\varphi + \sigma_s \cos 2\varphi}{g(\varphi)}, \quad f_2 = \frac{\sqrt{k'^2 + \sigma_s^2}}{|g(\varphi)|}, \tag{11}$$

$$g = k' \cos 2\varphi - \sigma_s \sin 2\varphi, \quad k' = \frac{\left(\sigma_{s1}^2 - \sigma_{s2}^2\right) \cos 2\varphi}{\sigma_s}.$$
 (12)

При $\varphi = \pm \pi/4$ производная k' равна нулю и характеристики ξ и η совпадают с линиями скольжения – направлениями максимального касательного напряжения при $\sigma_s = \sigma_{s1}$ и $\sigma_s = \sigma_{s2}$. Вдоль характеристик выполняются дифференциальные соотношения [9]

$$d\sigma - \sqrt{k'^2 + \sigma_s^2} d\varphi = 0$$
 вдоль ξ , $d\sigma + \sqrt{k'^2 + \sigma_s^2} d\varphi = 0$ вдоль η , (13)

обобщающие интегралы Генки в виде

$$\sigma \mp F(\varphi) = const, \quad F = \int \sqrt{k'^2 + \sigma_s^2} d\varphi.$$
 (14)

Так как при $k' \neq 0$ характеристики ξ и η не совпадают с направлениями максимального касательного напряжения, то нормальные σ_{ξ} , σ_{η} и касательные $\tau_{\xi\eta}$ напряжения на характеристиках связаны с переменными σ и φ уравнениями равновесия

$$\sigma_{\xi} = \sigma - k(\varphi) \sin 2\gamma, \quad \sigma_{\eta} = \sigma + k(\varphi) \sin 2\gamma, \quad \tau_{\xi\eta} = k(\varphi) \cos 2\gamma, \quad \gamma = \alpha - \varphi \tag{15}$$

Дифференциальные уравнения для скоростей перемещений V_x , V_y , получаемые из ассоциированного закона пластического течения, относятся к гиперболическому типу с характеристиками ξ , η , совпадающими с характеристиками для напряжений [9]. Вследствие пластической несжимаемости материала и ортогональности характеристик вдоль них выполняются соотношения Гейрингер для проекций вектора скорости V_{ξ} , V_{η} на направления характеристик ξ и η

$$dV_{\xi} - V_{\eta}d\alpha = 0$$
 вдоль ξ , $dV_{\eta} + V_{\xi}d\alpha = 0$ вдоль η , (16)

$$V_x = V_\xi \cos \alpha - V_\eta \sin \alpha, \quad V_y = V_\xi \sin \alpha + V_\eta \cos \alpha, \tag{17}$$

$$V_{\xi} = V_x \cos \alpha + V_y \sin \alpha, \quad V_{\eta} = V_y \cos \alpha - V_x \sin \alpha. \tag{18}$$

Уравнения (17) и (18) используются для связи переменных V_x , V_y с V_{ξ} , V_{η} и обратно; α – угол наклона касательной к характеристике ξ , определяемый первым уравнением (10).

2. Рассмотрим задачу Прандтля о давлении плоского штампа на ортотропное идеально пластическое полупространство, в котором главные оси эллипса анизотропии совпадают с направлениями осей координат x, y. Начало координат совместим с центром O границы контакта штампа с полупространством и рассмотрим правую часть пластической области от линии симметрии x = 0, показанную на рис. 1.

На границе AD напряжения σ_y и τ_{xy} равны нулю и напряжение σ_x отрицательно. Эти условия и уравнения (9) определяют $\varphi = \pi/4$, $\sigma = -k$, $\sigma_x = -2k$. Из уравнений (8) и (12) находим $2k = \sigma_{s1}$, k' = 0, где σ_{s1} – напряжение текучести вдоль оси x. Постоянные значения σ , φ , k и k' = 0 на прямолинейной границе AD и дифференциальные соотношения (13) определяют однородное напряженное состояние при $\sigma = -\sigma_{s1}/2$, $\varphi = \pi/4$ в треугольной области ACD. Из уравнений (10) – (12) следует совпадение характеристик ξ и η с направлениями максимальных касательных напряжения – линиями скольжения в этой области.

При давлении плоского гладкого штампа на полупространство угол φ изменяется в угловой точке A от $+ \pi/4$ на границе AD до $- \pi/4$ на границе OA. Так как η характеристика AC прямолинейна с постоянными значениями σ и φ , и соотношения (8) – (14) зависят только от

Рис. 1.

Рис. 2.

 φ , то интегрирование уравнений (10) – (12) с дифференциальными соотношениями (13) приводит к центрированному вееру прямолинейных η характеристик и ортогональных к ним ξ характеристик в области ACB, как и в случае изотропного тела. Однако в этой области характеристики ξ и η не совпадают с линиями скольжения изотропного тела вследствие изменения напряжения текучести от σ_{s1} в области ACD до σ_{s2} в области однородного напряженного состояния OAB с прямолинейными характеристиками ξ и η . Давление q на штамп определяется интегралом (14) с граничным условием $\varphi = \pi/4$, $\sigma = -\sigma_{s1}/2$ на AC с изменением угла до $\phi = -\pi/4$ на AB и вторым соотношением (9) при $k = \sigma_{s2}/2$

$$q = \frac{1}{2}(\sigma_{s1} + \sigma_{s2}) + \int_{-\pi/4}^{+\pi/4} \sqrt{k'^2 + \sigma_s^2} d\varphi.$$
 (19)

При численном решении уравнений (10) – (13) используем циклические процедуры расчета сетки характеристик для последовательности элементарных задач Гурса [9]. На рис. 2 показан регулярный узел P на пересечении характеристик ξ и η , проходящих через точки 1 и 2. Обозначим известные значения переменных в этих точках нижними индексами 1 и 2, и представим дифференциальные соотношения (13) между точками P и 2 вдоль ξ и между точками P и 1 вдоль η конечными разностями

$$\sigma - \sigma_2 = F - F_2, \quad \sigma - \sigma_1 = F_1 - F, \tag{20}$$

где $F,\,F_1$ и F_2 – значения интеграла (14) в точках $P,\,1$ и 2. Из уравнений (12) находим σ и F в точке P

$$\sigma = \frac{1}{2} \left(\sigma_1 + \sigma_2 + F_1 - F_2 \right), \quad F = \frac{1}{2} \left(\sigma_1 - \sigma_2 + F_1 + F_2 \right). \tag{21}$$

Представляя дифференциал dF вдоль ξ конечной разностью между точками P и 2

$$F - F_2 = \sqrt{k'^2 + \sigma_s^2} (\varphi - \varphi_2)$$

и исключая F по второй формуле (21) находим

$$\varphi = \varphi_2 + \frac{\sigma_1 - \sigma_2 + F_1 - F_2}{2\sqrt{k'(\tilde{\varphi}_1) + \sigma_s^2(\tilde{\varphi}_1)}}, \quad \tilde{\varphi}_1 = \frac{1}{2} \left(\varphi + \varphi_2\right).$$
(22)

Угол φ вычисляется по уравнению (22) простыми итерациями с использованием формул (8) и (12) для σ_s и k'. Координаты точки P определяются из линейной системы уравнений, получаемых конечно-разностной аппроксимацией уравнений характеристик (10) с использованием средних значений угла φ между точками 1 и 2 и точкой P.

После расчета сетки характеристик определяется поле скоростей перемещений графическим построением годографа скоростей с использованием ортогональности характеристик на физической плоскости x, y и на плоскости годографа V_x, V_y , или численным решением дифференциальных соотношений (16) аналогично задачам для изотропного идеально пластического тела [9].

3. На рис. 1 показана сетка характеристик ξ , η при давлении штампа на ортотропное полупространство с отношением напряжений текучести эллипса анизотропии $\sigma_{s2}/\sigma_{s1} = 2$ с максимальным напряжением текучести по нормали к границе полупространства. В области *ABC* сетка получена численным решением вырожденной задачи Гурса от угловой точки *A* с равномерным шагом 0.025 по углу φ и от прямолинейной характеристики *AC* с граничными условиями $\varphi = \pi/4$, $\sigma = -\sigma_{s1}/2$, F = 0. Численные результаты показывают выполнение условия ортогональности характеристик с точностью 10^{-5} . В зонах однородного напряженного касательного напряжения вследствие равенства нулю производной k' в экстремальных точках эллипса анизотропии.

В области ABC характеристики ξ , η не совпадают с линиями скольжения для изотропного тела, что видно из неравномерности шага по углу α между прямолинейными характеристиками η , которые сгущаются около границы AC. Для приведенного примера анизотропии предельное давление q на штамп равно $3.989 \cdot \sigma_{s1}$, что существенно выше предельного давления $2.571 \cdot \sigma_s$ для изотропного тела. При обратном отношении $\sigma_{s2}/\sigma_{s1} = 0.5$ предельное давление на штамп равно $1.994 \cdot \sigma_{s1}$ и характеристики η сгущаются около границы AB, что показывает на существенное изменение напряженного состояния в пластической области.

В таблицах 1 и 2 приведены зависимости угла α , безразмерных значений σ , σ_s и интеграла F от угла φ на круговой характеристике ξ , определяющие распределение напряжений по уравнениям (15) в области *ABC* для эллипсов анизотропии с отношениями $\sigma_{s2}/\sigma_{s1} = 2$ и $\sigma_{s2}/\sigma_{s1} = 0.5$. Эти результаты показывают существенное влияние анизотропии на напряженное состояние в пластической области и на предельное давление на штамп, определяемое вторым соотношением (9) при $\varphi = -\pi/4$.

На рис. 3 показаны зависимости безразмерного предельного давления на штамп q/σ_{s1} от отношения σ_{s2}/σ_{s1} , полученные интегрированием уравнения (19), которые показывают существенное влияние анизотропии на предельное состояние материала полупространства.

4. На рис. 4 показан годограф скоростей перемещений на плоскости V_x , V_y , полученный ортогональным отображением характеристик ξ , η физической плоскости (рис. 1а). В случае образования жесткой области *OAB*, движущейся со скоростью штампа $V_y = -1$, в точке *B* возникает разрыв скорости $[V] = 1/\sqrt{2}$, сохраняющий постоянное значение вдоль жесткопластической границы *BCD* при $V_\eta = 0$ по условиям несжимаемости и непрерывности нормальной

φ	α	$-\sigma$	σ_s	F
0.7854	0.7854	0.5000	1.000	0.0000
0.6807	0.7556	0.6058	1.016	0.1058
0.5760	0.7078	0.7170	1.063	0.2170
0.4712	0.6363	0.8374	1.177	0.4015
0.3665	0.5448	0.9685	1.223	0.4685
0.2618	0.4395	1.111	1.323	0.6107
0.1571	0.3255	1.264	1.427	0,7638
0.0524	0.2064	1.427	1.531	0.9272
0.0000	0.1457	1.512	1.581	1.012
-0.0524	0.0845	1.600	1.630	1.100
-0.1571	-0.0390	1.781	1.721	1.281
-0.2618	-0.1632	1.970	1.803	1.470
-0.3665	-0.2876	2.166	1.872	1.666
-0.4712	-0.4122	2.367	1.927	1.867
-0.5760	-0.5366	2.572	1.967	2.072
-0.6807	-0.6610	2.780	1.992	2.280
-0.7854	-0.7854	2.989	2.000	2.489

Таблица 1.
 $\sigma_{s2}/\sigma_{s1}=2$

Таблица 2.
 $\sigma_{s2}/\sigma_{s1}=0.5$

ϕ	α	$-\sigma$	σ_s	F
0.7854	0.7854	0.5000	1.000	0.0000
0.6807	0.6610	0.6046	0.9959	0.1046
0.5760	0.5366	0.7085	0.9837	0.2085
0.4712	0.4122	0.8110	0.9365	0.3110
0.3665	0.2876	0.9115	0.9359	0,4115
0.2618	0.1632	1.009	0.9014	0.5092
0.1571	0.0390	1.104	0.8607	0.6038
0.0524	-0.0845	1.194	0.8150	0.6945
0.0000	-0.1457	1.238	0.7906	0.7382
-0.0524	-0.2064	1.281	0.7654	0.7809
-0.1571	-0.3255	1.363	0.7135	0.8625
-0.2618	-0.4395	1.439	0.6614	0.9391
-0.3665	-0.5448	1.510	0.6116	1.010
-0.4712	-0.6363	1.576	0.5671	1.076
-0.5760	-0.7078	1.636	0.5314	1.136
-0.6807	-0.7556	1.692	0.5081	1.192
-0.7854	-0.7854	1.744	0.5000	1.244

компоненты скорости на этой границе. В этом случае область ACD скользит как жесткое тело по наклонной границе CD со скоростью [V] под углом $\pi/4$ к границе полупространства.

Однородному напряженному состоянию в области OAB с гладкой границей штампа может соответствовать однородное поле скоростей перемещений с линейным изменением скорости V_y от – 1 до нуля на линии симметрии x = 0 и линейным изменением скорости V_x от нуля

Рис. 3.

Рис. 4.

до единицы при скольжении по гладкой границе штампа OA. Этим условиям соответствует линейное изменение скоростей на характеристике AB, которое вместе с условием непрерывности скоростей $V_{\xi} = V_{\eta} = 0$ на жесткопластической границе BCD определяет непрерывное линейное изменение скоростей вдоль прямолинейных характеристик η в области и непрерывное линейное изменение скоростей в области ACD. Годограф с непрерывным полем скоростей показан штриховыми линиями на рис. 4. В этом случае точки границы AD смещаются под углом $\pi/4$ к границе полупространства с линейным увеличением модуля вектора скорости от нуля в точке D до единицы в точке A.

Таким образом, при давлении гладкого плоского штампа на ортотропное полупространство кинематика пластического течения остается такой же, как и для изотропного тела, включая возможность реализации различных полей скоростей в зависимости от кинематики движения области однородного напряженного состояния под штампом [10].

ЛИТЕРАТУРА

Xилл, Р. Математическая теория пластичности / Р. Хилл. – М. : ГИТТЛ, 1956. – 407 с.
 Томленов, А. Д. Теория пластического деформирования металлов / А. Д. Томленов. – М. : Металлургия, 1972. – 408 с.

[3] *Непершин, Р. И.* Обжим тонкостенной трубы криволинейной матрицей / Р. И. Непершин // Проблемы машиностроения и надежности машин. – 2009. – № 3. – С. 54–62.

[4] Матченко, Н. М. Некоторые вопросы теории пластичности анизотропных материалов : автореф. дис. ... д-ра. физ.-мат. наук / Н. М. Матченко. – Тула, 1975.

[5] *Кузнецов, Е. Е.* К построению теории идеальной пластичности ортотропных сред / Е. Е. Кузнецов, И. Н. Матченко, Н. М. Матченко // Проблемы механики неупругих деформаций : сб. ст. к 70-летию Д. Д. Ивлева. – М., 2001. – С. 178–183.

[6] Кузнецов, Е. Е. Осесимметричная задача теории идеальной пластичности трансверсально-изотропной среды / Е. Е. Кузнецов, Н. М. Матченко, В. В. Усачев // Избранные вопросы теории упругости, пластичности и ползучести : сб. ст. к 75-летию М. А. Задояна. – Ереван, 2006. – С. 171–176.

[7] Горский, А. В. К теории общих двумерных задач теории идеальной пластичности для анизотропного неоднородного сжимаемого материала / А. В. Горский, П. В. Горский // Проблемы механики деформируемых твердых тел и горных пород : сб. ст. к 75-летию Е. И. Шемякина. – М., 2006. – С. 166–172.

[8] *Радаев, С. Ю.* О внедрении жесткой пирамиды в анизотропное идеально пластическое полупространство / С. Ю. Радаев // Проблемы механики деформируемых твердых тел и горных пород : сб. ст. к 75-летию Е. И. Шемякина. – М. : Физматлит, 2006. – С. 569–575.

[9] Ивлев, Д. Д. Предельное состояние деформированных тел и горных пород / Д. Д. Ивлев, Л. А. Максимова, Р. И. Непершин, Ю. Н. Радаев, С. И. Сенашов, Е. И. Шемякин. – М. : Физматлит, 2008. – 832 с.

[10] *Ишлинский, А. Ю.* Математическая теория пластичности / А. Ю. Ишлинский, Д. Д. Ивлев. – М. : Физматлит, 2001. – 704 с.

Ivlev D. D., Nepershin R. I.

PRESSURE OF THE FLAT STAMP ON ORTHOTROPIC IDEALLY PLASTIC SEMISPACE

I. Yakovlev Chuvash State Pedagogical University

Moscow State Technological University "Stankin"

Abstract. The problem about pressure of a flat stamp on orthotropic ideally plastic semispace is considered. Dependence of pressure of fluidity on a direction of the main pressure is set ellipsoid anisotropies. The angular point of a stamp and rectilinear border of semispace generate the aligned fan of rectilinear characteristics, as well as in case of an isotropic body, with similar kinematics of a plastic current. But pressure upon a stamp essentially depends on plastic anisotropy.

Keywords: ideal plasticity, flat problem, orthotropic semispace, ellipsoid anisotropies, pressure of a flat stamp.

Ивлев Дюис Данилович

доктор физико-математических наук, профессор, Чувашский государственный педагогический университет им. И. Я. Яковлева

e-mail: ivlev21@mail.ru

Непершин Ростислав Иванович

доктор технических наук, профессор, Московский государственный технический университет "СТАНКИН", г. Москва

e-mail: rostislavn@mtu-net.ru

Ivlev Dyuis Danilovich

Dr. Sci. Phys. & Math., Professor, I. Yakovlev Chuvash State Pedagogical University, Cheboksary

Nepershin Rostislav Ivanovich

Dr. Eng. Sci., Professor, Moscow State Technological University "Stankin", Moscow