Д. А. Абруков

ИЗГИБ ПОЛУБЕСКОНЕЧНОЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ, ЗАЩЕМЛЕННОЙ ПО ДЛИННЫМ СТОРОНАМ, НА ТОРЦЕ КОТОРОЙ ЗАДАНЫ ПРОГИБ ИЛИ УГОЛ ПОВОРОТА. ТОЧНОЕ РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ

Чувашский государственный педагогический университет им. И. Я. Яковлева, г. Чебоксары, Россия

Аннотация. Построено точное аналитическое решение краевой задачи изгиба полубесконечной прямоугольной пластины с защемлёнными длинными сторонами, на торце которой заданы прогиб или угол поворота (краевые функции четные). Решение представляется в рядах по функциям Фадля – Папковича. Искомые коэффициенты ряда находятся с помощью систем функций, биортогональных к функциям Фадля – Папковича.

Ключевые слова: изгиб пластины, изгиб полубесконечной прямоугольной пластины, функции Фадля – Папковича, аналитические решения.

УДК: 539.3+624.073

Введение. В работах [1]–[3] изучались свойства систем функций Фадля-Папковича, возникающих при решении двумерной краевой задачи теории упругости в прямоугольнике (полуполосе) с однородными граничными условиями по двум противоположным сторонам. Функции Фадля-Папковича комплекснозначны и не образуют базиса на отрезке в обычном смысле [1]. Поэтому разложения по ним невозможно построить, опираясь на классический аппарат теории базиса функций [4]. Решению краевой задачи предшествует изучение, так называемых разложений Лагранжа [1]. Разложения Лагранжа являются аналогами разложений по тригонометрическим системам функций и играют такую же роль при решении краевых задач, какую тригонометрические ряды играют в решениях Файлона-Рибьера. Аналогичная ситуация имеет место и в задаче изгиба тонких прямоугольных пластин, а также её частного случая – изгиба полубесконечной прямоугольной пластины.

1. Постановка задачи. Рассмотрим пластину, отнесенную к декартовым координатам x, y. Дифференциальные уравнения равновесия можно записать в виде [5]

[©] Абруков Д. А., 2016

Абруков Денис Александрович

e-mail: AbrukovDA@yandex.ru, кандидат физико-математических наук, доцент кафедры математического анализа, алгебры и геометрии, Чувашский государственный педагогический университет им. И. Я. Яковлева, г. Чебоксары, Россия.

Исследование выполнено при финансовой поддержке гранта РФФИ № 15-41-02-644 р_поволжье_а.

Поступила 12.07.2016

$$\begin{cases}
\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} = -P(x, y), \\
\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} = Q_x(x, y), \\
\frac{\partial M_{xy}}{\partial x} + \frac{\partial M_y}{\partial y} = Q_y(x, y),
\end{cases}$$
(1.1)

где P(x,y) – произвольная поперечная нагрузка, Q_x, Q_y – перерезывающие силы, M_x, M_y, M_{xy} – изгибающие и крутящий моменты. Моменты и углы поворота Φ_x, Φ_y можно выразить через прогиб w = w(x, y):

$$M_x(x,y) = -D\left[\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2}\right], \quad M_y(x,y) = -D\left[\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2}\right],$$
$$M_{xy}(x,y) = -M_{yx}(x,y) = -D(1-\nu)\frac{\partial^2 w}{\partial x \partial y}, \quad \Phi_x(x,y) = D\frac{\partial w}{\partial x}, \quad \Phi_y(x,y) = D\frac{\partial w}{\partial y},$$
(1.2)

где ν – коэффициент Пуассона, а

$$D = \frac{E\rho^3}{12(1-\nu^2)}$$

– цилиндрическая жесткость пластины (E – модуль упругости, ρ – толщина пластины).

Кроме того,

$$Q_x = -D\frac{\partial}{\partial x}\nabla^2 w, \quad Q_y = -D\frac{\partial}{\partial y}\nabla^2 w, \tag{1.3}$$

где $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ – оператор Лапласа на плоскости.

Подставляя выражения (1.3) в первое из уравнения (1.1) получим основное дифференциальное уравнение теории изгиба пластин

$$D\nabla^2 \nabla^2 w = P(x, y). \tag{1.4}$$

Помимо обычных сил Q_x, Q_y вводятся также обобщенные в смысле Кирхгоффа перерезывающие силы

$$K_{x} = Q_{x} + \frac{\partial M_{xy}}{\partial y} = -D \left[\frac{\partial^{3} w}{\partial x^{3}} + (2 - \nu) \frac{\partial^{3} w}{\partial x \partial y^{2}} \right],$$

$$K_{y} = Q_{y} + \frac{\partial M_{xy}}{\partial x} = -D \left[\frac{\partial^{3} w}{\partial y^{3}} + (2 - \nu) \frac{\partial^{3} w}{\partial y \partial x^{2}} \right].$$
(1.5)

Будем строить решение, пользуясь методом начальных функций [6], позволяющим эффективно получать выражения для функций Фадля-Папковича. Основные соотношения метода имеют вид

$$W(x,y) = L_{WW}(y)W_0(x) + L_{W\Phi}(y)\Phi_0(x) + L_{WM}(y)M_0(x) + L_{WQ}(y)Q_0(x),$$

$$\Phi_y(x,y) = L_{\Phi W}(y)W_0(x) + L_{\Phi \Phi}(y)\Phi_0(x) + L_{\Phi M}(y)M_0(x) + L_{\Phi Q}(y)Q_0(x),
M_y(x,y) = L_{MW}(y)W_0(x) + L_{M\Phi}(y)\Phi_0(x) + L_{MM}(y)M_0(x) + L_{MQ}(y)Q_0(x),$$
(1.6)

$$K_y(x,y) = L_{QW}(y)W_0(x) + L_{Q\Phi}(y)\Phi_0(x) + L_{QM}(y)M_0(x) + L_{QQ}(y)Q_0(x)$$

где $L_{WW}(h)$, $L_{WM}(h)$ и т. д. – операторы метода начальных функций [6]. ФункцииW(x, y), $\Phi_y(x, y)$, $M_y(x, y)$, $K_y(x, y)$, определенные при y = 0,

$$W_{0}(x) = Dw(x,0), \quad \Phi_{0}(x) = \frac{\partial W(x,0)}{\partial y}, M_{0}(x) = M_{y}(x,0), \quad Q_{0}(x) = K_{y}(x,0),$$
(1.7)

называются начальными. Решение задачи будем искать с разделением на симметрическое и обратно симметрическое относительно линии симметрии пластины y = 0. В случае симметрической задачи начальные функции $\Phi_0(x) = Q_0(x) = 0$. Зная начальные функции, по формулам (1.6), (1.7) можно найти основные факторы.

Рассмотрим полубесконечную прямоугольную пластину {П : $|x| \ge 0, |y| \le h$ } шириной 2h с защемленными краями $y = \pm h$:

$$W(x, \pm h) = \Phi_y(x, \pm h) = 0, \tag{1.8}$$

и с некоторыми граничными условиями на торце x = 0.

С помощью формул (1.6) удовлетворим граничным условиям (1.8), которые примут вид:

$$L_{\Phi W}(\alpha, h)W_0(x) + L_{\Phi M}(\alpha, h)M_0(x) = 0, L_{WW}(\alpha, h)W_0(x) + L_{WM}(\alpha, h)M_0(x) = 0.$$
(1.9)

Здесь $W_0(x) = Dw(x,0), M_0(x) = M_y(x,0)$ – начальные функции, определенные при $y = 0, \alpha = d/dx$ – оператор дифференцирования.

Введем разрешающую функцию F(x) по формулам

$$W_0(x) = -L_{\Phi M}(\alpha, h)F(x), \ M_0(x) = L_{\Phi W}(\alpha, h)F(x).$$
(1.10)

При этом первое из уравнений (1.9) будет тождественно удовлетворено, а второе примет вид

$$[L_{WM}(\alpha, h)L_{\Phi W}(\alpha, h) - L_{WW}(\alpha, h)L_{\Phi M}(\alpha, h)]F(x) = 0.$$
(1.11)

Раскрывая выражения для дифференциальных операторов, получим обыкновенное дифференциальное уравнение бесконечного порядка

$$\left(\frac{2\alpha h + \sin 2\alpha h}{4\alpha}\right)F(x) = 0.$$
(1.12)

Будем искать его решение в виде

$$F(x) = e^{\lambda x}.\tag{1.13}$$

Подставляя (1.13) в (1.11), получим трансцендентное характеристическое уравнение

$$\frac{L(\lambda,h)}{\lambda} = 0, \tag{1.14}$$

$$L(\lambda, h) = \frac{1}{4} \left(2\lambda h + \sin 2\lambda h \right). \tag{1.15}$$

Уравнение (1.15) имеет бесконечное множество комплексных корней $\{\pm \lambda_k, \pm \bar{\lambda}_k\} = \Lambda, \ k = 1, 2....$ Ниже для иллюстрации приведены значения пяти корней уравнения (1.15) при $h = 1, \nu = \frac{1}{3}$, принадлежащих первой координатной четверти (табл. 1).

Таблица 1

$\mathbb{N}^{\underline{0}}$ корня λ_k	$Re\lambda_k$	$Im\lambda_k$
1	2.10619611524533	1.12536430580093
2	5.356268698639631	1.551574372912625
3	8.536682426575915	1.77554367351104
4	11.69917761282565	1.929404496552787
5	14.85405991263802	2.046852462382667

Для определения точных значений λ_k можно воспользоваться асимптотической формулой

$$\lambda_k \approx \frac{1}{h} \left[k\pi - \frac{\pi}{4} - \frac{\ln(4k\pi - \pi)}{4k\pi} \right] + i\frac{1}{h} \left[\frac{\ln(4k\pi)}{2} - \frac{\ln(4k\pi - \pi)}{4k\pi} \right]$$

Итак, решение уравнения (1.11), имеет вид

$$F(x) = \sum_{k=1}^{\infty} \left(A_k e^{\lambda_k x} + \bar{A}_k e^{\bar{\lambda}_k x} \right) \ (\lambda_k \in \Lambda).$$
(1.16)

Подставляя (1.16) в формулы (1.9) найдем начальные функции, а затем по формулам (1.6) – прогиб, углы поворота и моменты ($Re\lambda_k < 0$, W(x, y) = Dw(x, y)):

$$W(x,y) = \sum_{k=1}^{\infty} A_k \omega(\lambda_k, y, h) e^{\lambda_k x} + \bar{A}_k \omega(\bar{\lambda}_k, y, h) e^{\bar{\lambda}_k x} ,$$

$$\Phi_x(x,y) = \sum_{k=1}^{\infty} A_k \lambda_k \omega(\lambda_k, y, h) e^{\lambda_k x} + \bar{A}_k \bar{\lambda}_k \omega(\bar{\lambda}_k, y, h) e^{\bar{\lambda}_k x} ,$$

$$\Phi_y(x,y) = \sum_{k=1}^{\infty} A_k \phi_y(\lambda_k, y, h) e^{\lambda_k x} + \bar{A}_k \phi_y(\bar{\lambda}_k, y, h) e^{\bar{\lambda}_k x} ,$$

$$M_x(x,y) = \sum_{k=1}^{\infty} A_k m_x(\lambda_k, y, h) e^{\lambda_k x} + \bar{A}_k m_x(\bar{\lambda}_k, y, h) e^{\bar{\lambda}_k x} ,$$

$$M_y(x,y) = \sum_{k=1}^{\infty} A_k m_y(\lambda_k, y, h) e^{\lambda_k x} + \bar{A}_k m_y(\bar{\lambda}_k, y, h) e^{\bar{\lambda}_k x} ,$$

$$M_{xy}(x,y) = \sum_{k=1}^{\infty} A_k m_{xy}(\lambda_k, y, h) e^{\lambda_k x} + \bar{A}_k m_{xy}(\bar{\lambda}_k, y, h) e^{\bar{\lambda}_k x} ,$$

где

$$\omega(\lambda_k, y, h) = \frac{1}{2} \left[\lambda_k y \sin \lambda_k h \sin \lambda_k y + (\sin \lambda_k h + \lambda_k h \cos \lambda_k h) \cos \lambda_k y \right];$$

$$\phi_x(\lambda_k, y, h) = \frac{\lambda_k}{2} \left\{ \lambda_k y \sin \lambda_k h \sin \lambda_k y + (\sin \lambda_k h + \lambda_k h \cos \lambda_k h) \cos \lambda_k y \right\};$$

$$\phi_y(\lambda_k, y, h) = -\frac{\lambda_k^2}{2} \left[h \cos \lambda_k h \sin \lambda_k y - y \sin \lambda_k h \cos \lambda_k y \right];$$

 $m_x(\lambda_k, y, h) = \frac{\lambda_k^2}{2} \left\{ (\nu - 1)\lambda_k \sin \lambda_k h \sin \lambda_k y - [(\nu + 1)\sin \lambda_k h - (\nu - 1)\lambda_k h \cos \lambda_k h] \cos \lambda_k y \right\};$ (1.18)

$$m_y(\lambda_k, y, h) = -\frac{\lambda_k^2}{2} \left((\nu - 1)\lambda_k y \sin \lambda_k h \sin \lambda_k y + \left[(\nu + 1) \sin \lambda_k h + (\nu - 1)\lambda_k h \cos \lambda_k h \right] \cos \lambda_k y \right);$$
$$m_{xy}(\lambda_k, y, h) = -\frac{\lambda_k^3}{2} (\nu - 1) \left\{ h \cos \lambda_k h \sin \lambda_k y - y \sin \lambda_k h \cos \lambda_k y \right\}$$

– функции Фадля – Папковича.

Функции (1.18) назовем *s*-представлением функций Фадля – Папковича. Если же разрешающую функцию F(x) вводить по формулам:

$$W_0(x) = -L_{WM}(\alpha, h)F(x), \ M_0(x) = L_{WW}(\alpha, h)F(x),$$
(1.19)

то получим другие выражения для функций Фадля – Папковича, которые назовем с-представлением функций Фадля-Папковича.

На продольных границах $y = \pm h$ полубесконечной прямоугольной пластины граничные условия (1.8) удовлетворяются автоматически. Удовлетворяя с помощью выражений (1.17) граничным условиям, заданным на торце пластины x = 0, приходим к задаче определения коэффициентов A_k , \bar{A}_k из двух разложений по двум системам функций Фадля – Папковича, например

$$W(y) = \sum_{k=1}^{\infty} A_k \omega(\lambda_k, y, h) + \bar{A}_k \omega(\bar{\lambda}_k, y, h),$$

$$\Phi_x(y) = \sum_{k=1}^{\infty} A_k \phi_x(\lambda_k, y, h) + \bar{A}_k \phi_x(\bar{\lambda}_k, y, h),$$
(1.20)

где $W(y) = W(0, y), \ \Phi_x^{(y)} = \Phi_x^{(0, y)}$ – заданные при x = 0 прогиб и угол поворота (краевые функции четные). Коэффициенты A_k находятся из системы (1.20), как и в работах [7]–[9], с помощью функций, биортогональных к функциям Фадля-Папковича.

2. Биортогональные функции. Построим функции $W_k(y)$, $\Phi_{xk}(y)$, биортогональные к функциям Фадля-Папковича (1.18). Функции, получающиеся из функций Фадля-Папковича путем замены λ_k комплексным параметром λ , называются порождающими [7], [10].

Как и в статьях [7], [10], биортогональные функции будем искать, как решения уравнений, полагая в них λ вещественным:

$$\int_{-\infty}^{\infty} \omega(\lambda, y, h) W_k(y) dy = \frac{L(\lambda, h)}{\lambda^2 - \lambda_k^2}; \int_{-\infty}^{\infty} \phi_x(\lambda, y, h) \Phi_{xk}(y) dy = \frac{\lambda L(\lambda, h)}{\lambda^2 - \lambda_k^2}.$$
(2.1)

Для комплексных значений λ , в частности при $\lambda = \lambda_k \in \Lambda$, прямую интегрирования в формулах (2.1) надо заменить *T*-образным контуром *T*, лежащим в плоскости комплексного переменного z = x + iy и составленным из отрезка мнимой оси $y \in [-h, h]$ и луча $x \in (-\infty, 0)$ [7], [10].

При $\lambda \to \lambda_k$, в соответствии с асимптотическим равенством [11]

$$f(\lambda) - f(\lambda_k) = f'(\lambda_k) (\lambda - \lambda_k),$$

из формул (2.1) получаются следующие соотношения биортогональности:

$$\int_{T} \omega(\lambda_m, y, h) W_k(y) dy = \begin{cases} M_k & \text{при } \lambda_m = \lambda_k; \\ 0 & \text{при } \lambda_m \neq \lambda_k, \end{cases}$$
(2.2)
$$\int_{T} \phi_x(\lambda_m, y, h) \Phi_{xk}(y) dy = \begin{cases} \lambda_k M_k & \text{при } \lambda_m = \lambda_k; \\ 0 & \text{при } \lambda_m \neq \lambda_k, \end{cases}$$

где

$$M_k = \frac{L'(\lambda_k, h)}{2\lambda_k} = \frac{h\cos^2(\lambda_k h)}{2\lambda_k},$$
(2.3)

а $L'(\lambda_k, h)$ – производная функции $L(\lambda, h)$ при $\lambda = \lambda_k$.

Понятие биортогональности включает в себя также равенства вида (k, m – любые)

$$\int_{T} \omega(\bar{\lambda}_m^{}y, h) \bar{W}_k(y) dy = \begin{cases} \bar{M}_k & \text{при } \bar{\lambda}_k^{=} \bar{\lambda}_m; \\ 0 & \text{при } \bar{\lambda}_k^{'} = \bar{\lambda}_m \end{cases}$$
(2.4)

И

$$\int_{T} \omega(\bar{\lambda}_m, y, h) W_k(y) dy = \int_{T} \omega(\lambda_m, y, h) \bar{W}_k(y) dy = 0.$$
(2.5)

Они сразу следуют из формул (2.1), (2.2).

Разложения порождающих функций и функции $L(\lambda, h)$ в ряды по степеням параметра λ имеют вид:

$$L(\lambda, h) = h\lambda - \frac{h^3}{3}\lambda^3 + \dots; \quad \omega(\lambda, y) = h\lambda - \frac{h^3}{3}\lambda^3 + \dots;$$

$$\phi_x(\lambda, y, h) = h\lambda^2 - \frac{h^3}{3}\lambda^4 + \dots$$
(2.6)

Биортогональные функции $W_k(y)$, $\Phi_{xk}(y)$ можно представить в виде суммы финитных, равных нулю вне отрезка $|y| \leq h$, и не финитных частей [7], [10]. Финитные части имеют вид ($|y| \leq h$, k = 1, 2, ...):

$$\omega k(y) = -\frac{\cos(\lambda_k y)}{2\lambda_k \sin(\lambda_k h)}, \quad \phi_{xk}(y) = \omega_k(y).$$
(2.7)

Простой способ их построения указан в статье [10].

3. Решение краевой задачи при условии, что на торце пластины задан прогиб. Пусть на торце x = 0 пластины {П : $|x| \ge 0, |y| \le h$ } задан прогиб

W(y)=W(0,y),а угол поворота $\Phi_x^{(y)}=\Phi_x^{(0,y)}=0.$ Тогда система уравнений (1.20) примет вид

$$W(y) = \sum_{k=1}^{\infty} A_k \omega(\lambda_k, y, h) + \bar{A}_k \omega(\bar{\lambda}_k, y, h),$$

$$0 = \sum_{k=1}^{\infty} A_k \phi_x(\lambda_k, y, h) + \bar{A}_k \phi_x(\bar{\lambda}_k, y, h),$$
(3.1)

Умножая равенства (3.1) соответственно на $W_k(y) + \bar{W}_k(y)$ и $\Phi_{xk}(y) + \bar{\Phi}_{xk}(y)$ и интегрируя обе части полученных равенств по контуру *T*, с учетом соотношений (2.2), (2.4)–(2.5) для каждого номера k = 1, 2, ..., получим систему алгебраических уравнений (2.3), (2.7)

$$w_k^* = A_k M_k + \bar{A}_k \bar{M}_k, 0 = \lambda_k A_k M_k + \bar{\lambda}_k \bar{A}_k \bar{M}_k,$$
(3.2)

где

$$w_k^* = w_k^+ \bar{w}_k^, \tag{3.3}$$

$$w_k = \int_{-h}^{h} W(y)\omega_k(y)dy, \quad \bar{w}_k = \int_{-h}^{h} W(y)\bar{\omega}_k(y)dy. \tag{3.4}$$

Поочерёдно умножая первое уравнение системы (3.2) на $\bar{\lambda}_k$ и λ_k , и вычитая второе уравнение, для каждого номера k = 1, 2, ... получим решение системы (3.2)

$$A_k = -\frac{w_k^* \bar{\lambda}_k}{\left(\lambda_k - \bar{\lambda}_k\right) M_k}, \quad \bar{A}_k = \frac{w_k^* \lambda_k}{\left(\lambda_k - \bar{\lambda}_k\right) \bar{M}_k} \quad . \tag{3.5}$$

Дальнейшее построение решений состоит в подстановке выражений (3.5) в равенства (1.17) и последующем выделении по аналогии с работами [12], [13] нуль-рядов. В результате получим выражения для прогиба, углов поворота и моментов в полубесконечной прямоугольной пластине ($a_k = Re\lambda_k, b_k = Im\lambda_k, a_k < 0$):

$$W(x,y) = \sum_{k=1}^{\infty} 2Re\left\{\frac{\omega\left(\lambda_{k}, y, h\right)}{M_{k}}w_{k}C(x)\right\}; \Phi_{x}\left(x, y\right) = \sum_{k=1}^{\infty} 2Re\left\{\frac{\phi_{x}\left(\lambda_{k}, y, h\right)}{\lambda_{k}M_{k}}w_{k}S(x)\right\};$$
$$\Phi_{y}\left(x, y\right) = \sum_{k=1}^{\infty} 2Re\left\{\frac{\phi_{y}\left(\lambda_{k}, y, h\right)}{M_{k}}w_{k}C(x)\right\};$$
$$M_{x}\left(x, y\right) = \sum_{k=1}^{\infty} 2Re\left\{\frac{m_{x}\left(\lambda_{k}, y, h\right)}{M_{k}}w_{k}C(x)\right\};$$
(3.6)

$$(x,y) = \sum_{k=1}^{\infty} 2Re\left\{\frac{m_y\left(\lambda_k, y, h\right)}{\lambda_k^2 M_k} w_k T(x)\right\}; M_{xy}\left(x, y\right) = \sum_{k=1}^{\infty} 2Re\left\{\frac{m_{xy}\left(\lambda_k, y, h\right)}{\lambda_k M_k} w_k S(x)\right\};$$

где

$$C(x) = \left\{ \cos(b_k x) - \frac{a_k \sin(b_k x)}{b_k} \right\} e^{a_k x}; \quad S(x) = -(a_k^2 + b_k^2) \frac{\sin(b_k x)}{b_k} e^{a_k x};$$

$$T(x) = -(a_k^2 + b_k^2) \left\{ \cos(b_k x) + \frac{a_k \sin(b_k x)}{b_k} \right\} e^{a_k x}.$$

На основании зависимостей (1.1) и (1.5), получим:

$$Q_x(x,y) = \frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y}, \ Q_y(x,y) = \frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x};$$
(3.7)

$$K_{x} = Q_{x} + \frac{\partial M_{xy}}{\partial y} = \frac{\partial M_{x}}{\partial x} + 2\frac{\partial M_{xy}}{\partial y},$$

$$K_{y} = Q_{y} + \frac{\partial M_{xy}}{\partial x} = \frac{\partial M_{y}}{\partial y} + 2\frac{\partial M_{xy}}{\partial x}.$$
(3.8)

Подставляя выражения (3.5) в равенства (3.6), (3.7), получим формулы для перерезывающих сил $Q_x(x,y)$, $Q_y(x,y)$ и $K_x(x,y)$, $K_y(x,y)$:

$$Q_x(x,y) = \sum_{k=1}^{\infty} 2Re \left\{ \frac{\lambda_k m_x \left(\lambda_k, y, h\right) \cdot dC(x)/dx + S(x) \cdot dm_{xy} \left(\lambda_k, y, h\right)/dy}{\lambda_k M_k} w_k \right\},$$

$$Q_y(x,y) = \sum_{k=1}^{\infty} 2Re \left\{ \frac{T(\lambda_k, x, l) \cdot dm_y \left(\lambda_k, y, h\right)/dy + \lambda_k m_{xy} \left(\lambda_k, y, h\right) \cdot dS(x)/dx}{\lambda_k^2 M_k} w_k \right\},$$
(3.9)

$$K_{x}(x,y) = Q_{x}(x,y) + \sum_{k=1}^{\infty} 2Re \left\{ \frac{dm_{xy}(\lambda_{k},y,h)/dy}{\lambda_{k}M_{k}} w_{k}S(x) \right\},$$

$$K_{y}(x,y) = Q_{y}(x,y) + \sum_{k=1}^{\infty} 2Re \left\{ \frac{m_{xy}(\lambda_{k},y,h)}{\lambda_{k}M_{k}} w_{k} \cdot dS(x)/dx \right\}.$$
Here, $y = \frac{1}{2}$, $h = 1, F = 0, 60, 10^{5}$ MHz, $a = 0, 1$ W(x), $= \frac{(y^{2} - h^{2})^{2}}{(y^{2} - h^{2})^{2}}$ (50)

Пример. Пусть $\nu = \frac{1}{3}$, $h = 1, E = 0, 69 \cdot 10^5$ МПа, $\rho = 0, 1, W(y) = \frac{(y - n)}{24}$ (материал – катанный алюминий). На рис. 1–4 показаны кривые распределения прогиба, моментов и перерезывающих сил на торце полубесконечной прямоугольной пластины.

Рис. 1

Рис. 4

4. Решение краевой задачи при условии, что на торце пластины задан угол поворота. Пусть на торце x = 0 пластины { $\Pi : |x| \ge 0, |y| \le h$ } задан угол поворота $\Phi_x^{(y)} = \Phi_x^{(0,y)}$, а прогиб W(y) = W(0,y) = 0. Тогда система уравнений (1.20) примет вид

$$0 = \sum_{k=1}^{\infty} A_k \omega(\lambda_k, y, h) + \bar{A}_k \omega(\bar{\lambda}_k, y, h),$$

$$\Phi_x(y) = \sum_{k=1}^{\infty} A_k \phi_x(\lambda_k, y, h) + \bar{A}_k \phi_x(\bar{\lambda}_k, y, h),$$
(4.1)

Умножая равенства (4.1) соответственно на $W_k(y) + \bar{W}_k(y)$ и $\Phi_{xk}(y) + \bar{\Phi}_{xk}(y)$ и интегрируя обе части полученных равенств по контуру *T*, с учетом соотношений (2.2), (2.4)–(2.5) для каждого номера k = 1, 2, ..., получим систему алгебраических уравнений (2.3), (2.7)

$$0 = A_k M_k + \bar{A}_k \bar{M}_k, w_k^* = \lambda_k A_k M_k + \bar{\lambda}_k \bar{A}_k \bar{M}_k,$$

$$(4.2)$$

где

$$w_k^* = w_k + \bar{w}_k, \tag{4.3}$$

$$w_{k} = \int_{-h}^{h} \Phi_{xk}(y)\phi_{xk}(y)dy, \quad \bar{w}_{k} = \int_{-h}^{h} \Phi_{xk}(y)\bar{\phi}_{xk}(y)dy.$$
(4.4)

Поочерёдно умножая первое уравнение системы (4.2) на $\bar{\lambda}_k$ и λ_k , и вычитая второе уравнение, для каждого номера k = 1, 2, ... получим решение системы (4.2)

$$A_k = \frac{w_k^*}{\left(\lambda_k - \bar{\lambda}_k\right) M_k}, \quad \bar{A}_k = -\frac{w_k^*}{\left(\lambda_k - \bar{\lambda}_k\right) \bar{M}_k}.$$
(4.5)

Дальнейшее построение решений состоит в подстановке выражений (4.5) в равенства (1.17) и последующем выделении по аналогии с работами [12], [13] нуль-рядов. В результате получим выражения (3.6) для прогиба, углов поворота и моментов в полубесконечной прямоугольной пластине, где

$$C(x) = \frac{\sin(b_k x)}{b_k} e^{a_k x}; \quad S(x) = \left\{ \cos(b_k x) + \frac{a_k}{b_k} \sin(b_k x) \right\} e^{a_k x};$$
$$T(x) = \left\{ 2a_k \cos(b_k x) + \frac{a_k^2 - b_k^2}{b_k} \sin(b_k x) \right\} e^{a_k x}. \tag{4.6}$$

Формулы для перерезывающих сил $Q_x(x,y)$, $Q_y(x,y)$ и $K_x(x,y)$, $K_y(x,y)$ примут вид (3.8).

Пример. Приведем примеры расчетов при $\nu = \frac{1}{3}, h = 1, E = 0, 69 \cdot 10^5$ МПа, $\rho = 0, 1, \Phi_x(y) = \frac{(y^2 - h^2)^2}{24}$ (материал – катанный алюминий). На рис. 5–8 показаны кривые распределения прогиба, моментов и перерезывающих сил.

Рис. 5

Заключение. Впервые дано точное аналитическое решение краевой задачи изгиба полубесконечной прямоугольной пластины, продольные стороны которой защемлены, а на торце заданы прогиб или угол поворота (краевые функции четные). Как и в случае плоской задачи теории упругости [7]–[9], решение строится в виде разложений по функциям Фадля – Папковича (однородным решениям), по существу, по той же схеме, что и решение в тригонометрических рядах. Искомые коэффициенты разложений находятся с помощью систем функций, биортогональных к функциям Фадля-Папковича.

ЛИТЕРАТУРА

[1] Коваленко М. Д. Разложения Лагранжа и нетривиальные представления нуля по однородным решениям // Доклады РАН. 1997. Т. 352. № 4. С. 480–482.

[2] Коваленко М. Д., Шуляковская Т. Д. Разложения по функциям Фадля – Папковича в полосе. Основы теории // Известия РАН. МТТ. 2011. № 5. С. 78–98.

[3] Коваленко М. Д., Меньшова И. В. Разложения Лагранжа по функциям Фадля-Папковича в обратно-симметрической задаче теории упругости для прямоугольной полуполосы // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия : Механика предельного состояния. 2013. № 1 (15). С. 81-90.

[4] Кашин Б. С., Саакян А. А. Ортогональные ряды. М. : АФЦ, 1999. 560 с.

[5] Тимошенко С. П., Войновский-Кригер С. Пластины и оболочки. М. : Наука, 1966. 636 с.

[6] Власов В. В. Метод начальных функций в задачах теории упругости и строительной механики. М.: Стройиздат, 1975. 224 с.

[7] Коваленко М. Д., Шуляковская Т. Д. // Известия РАН. Механика твердого тела. 2011. № 5. С. 78–98.

[8] Коваленко М. Д., Меньшова И. В., Шуляковская Т. Д. // Известия РАН. Механика твердого тела. 2013. № 5. С. 136–158

[9] Коваленко М. Д., Меньшова И. В. Аналитические решения двумерных краевых задач теории упругости в конечных областях с угловыми точками границы. Чебоксары : Изд-во Чуваш. гос. пед. ун-та, 2014. 123 с.

[10] Коваленко М. Д., Меньшова И. В., Шуляковская Т. Д. Разложения по функциям Фадля – Папковича. Примеры решений в полуполосе // Известия РАН. Механика твердого тела. 2013. № 5. С. 136–158.

[11] Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. І. М. : ФМЛ, 1962. 608 с.

[12] Абруков Д. А. Изгиб полуполосы со свободными продольными краями, на торце которой заданы изгибающий момент и обобщенная поперечная сила. Точное решение краевой задачи // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния. 2014. № 4 (22). С. 94–114.

[13] Коваленко М. Д., Клейн Н. В. Однородные решения теории упругости. Биортогональные разложения // Механика композиционных материалов и конструкций. 2005. Т. 11. № 3. С. 393–408.

D. A. Abrukov

THE BENDING OF A SEMI-INFINITE RECTANGULAR PLATE, CLAMPED ON THE LONG SIDES, AT WHICH END-WALL A DEFLECTION OR AN ANGLE OF TURN IS GIVEN

I. Yakovlev Chuvash State Pedagogical University, Cheboksary, Russia

Abstract. The exact analytical solution of a boundary value problem of a bend of a semi-infinite rectangular plate which long sides are clamped, and at an end-wall a deflection or an angle of turn is given (boundary function is even). The solution is submitted in series on Fadle-Papkovich functions. Required coefficients of series are by means of systems of functions, biorthogonal to Fadle – Papkovich functions.

Keywords: plate bending, semi-strip bending, Fadle – Papkovich functions, analytical solutions.

REFERENCES

[1] Kovalenko M. D. Razlozhenija Lagranzha i netrivial'nye predstavlenija nulja po odnorodnym reshenijam // Doklady RAN. 1997. Vol. 352. № 4. S. 480–482.

[2] Kovalenko M. D., Shuljakovskaja T. D. Razlozhenija po funkcijam Fadlja – Papkovicha v polose. Osnovy teorii // Izvestija RAN. MTT. 2011. № 5. S. 78–98.

[3] Kovalenko M. D., Men'shova I. V. Razlozhenija Lagranzha po funkcijam Fadlja-Papkovicha v obratno-simmetricheskoj zadache teorii uprugosti dlja prjamougol'noj polupolosy // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta imeni I. Ja. Jakovleva. Serija: Mehanika predel'nogo sostojanija. 2013. № 1 (15). S. 81-90.

[4] Kashin B. S., Saakjan A. A. Ortogonal'nye rjady M. : AFC, 1999. 560 s.

[5] Timoshenko S. P., Vojnovskij-Kriger S. Plastiny i obolochki. M. : Nauka, 1966. 636 s.

[6] Vlasov V. V. Metod nachal'nyh funkcij v zadachah teorii uprugosti i stroitel'noj mehaniki. M. : Strojizdat, 1975. 224 s.

[7] Kovalenko M. D., Shuljakovskaja T. D. // Izvestija RAN. Mehanika tverdogo tela. 2011. № 5. S. 78–98.

[8] Kovalenko M. D., Men'shova I. V., Shuljakovskaja T. D. // Izvestija RAN. Mehanika tverdogo tela. 2013. № 5. S. 136–158

[9] Kovalenko M. D., Men'shova I. V. Analiticheskie reshenija dvumernyh kraevyh zadach teorii uprugosti v konechnyh oblastjah s uglovymi tochkami granicy. Cheboksary : Izd-vo Chuvash. gos. ped. un-ta. 2014. 123 s.

[10] Kovalenko M. D., Men'shova I. V., Shuljakovskaja T. D. Razlozhenija po funkcijam Fadlja-Papkovicha. Primery reshenij v polupolose // Izvestija RAN. Mehanika tverdogo tela. 2013. \mathbb{N} 5. S. 136–158.

[11] Fihtengol'c G. M. Kurs differencial'nogo i integral'nogo ischislenija. Vol. I. M. : FML, 1962. 608 s.

Abrukov Denis Alexandrovich, Candidate of Phys. & Math., Assoc. Professor, Department of Algebra and Geometry, I. Yakovlev Chuvash State Pedagogical University, Cheboksary, Russia.

[13] Kovalenko M. D., Klejn N. V. Odnorodnye reshenija teorii uprugosti. Biortogonal'nye razlozhenija // Mehanika kompozicionnyh materialov i konstrukcij. 2005. Vol. 11. \mathbb{N}° 3. C. 393–408.