С. В. Матвеев, А. Н. Матвеева, Т. И. Рыбакова

РАВНОМЕРНОЕ РАСТЯЖЕНИЕ ТОНКОЙ АНИЗОТРОПНОЙ ПЛАСТИНЫ, ОСЛАБЛЕННОЙ ЭЛЛИПТИЧЕСКИМ ОТВЕРСТИЕМ, ПРИ УСЛОВИИ СОПРОТИВЛЕНИЯ ОТРЫВУ

Чувашский государственный университет им. И.Н. Ульянова, г. Чебоксары

Чувашский государственный педагогический университет им. И.Я. Яковлева, г. Чебоксары

Аннотация. В работе рассматривается равномерное растяжение тонкой пластины, ослабленной эллиптическим отверстием, из анизотропного упругопластического материала при условии сопротивления отрыву. При решении задачи используются соотношения, полученные в работах [1], [2]. Свойства анизотропии вводятся согласно идеям Хилла [3]. Методом малого параметра определены компоненты напряжения и граница, разделяющая пластическую и упругую зоны.

Ключевые слова: пластичность, упругость, линеаризация, напряжение, отрыв, анизотропия.

УДК: 539.374

Рассмотрим тонкую пластину из анизотропного идеальнопластического материала, ослабленную отверстием эллиптической формы. Уравнение контура эллиптического отверстия запишем в виде

$$\frac{x^2}{a^2(1+\varepsilon)^2} + \frac{y^2}{a^2(1-\varepsilon)^2} = 1.$$
 (1)

При $\varepsilon = 0$ согласно (1) имеет место круговое отверстие радиуса *a*. Условие пластичности для изотропного материала можно записать в виде

$$(\sigma_x - p_0)(\sigma_y - p_0) - \tau_{xy}^2 = 0, \qquad p_0 = const,$$
(2)

Матвеева Алена Николаевна

[©] Матвеев С. В., Матвеева А. Н., Рыбакова Т. И. 2017

Матвеев Сергей Владимирович

e-mail: sergio2100@mail.ru, кандидат физико-математических наук, доцент, Чувашский государственный университет им. И.Н. Ульянова, г. Чебоксары.

e-mail: roshtova@mail.ru, кандидат физико-математических наук, доцент, Чувашский государственный педагогический университет им. И.Я. Яковлева, г. Чебоксары.

Рыбакова Татьяна Ивановна

e-mail: rti2112@mail.ru, кандидат физико-математических наук, доцент, Чувашский государственный педагогический университет им. И.Я. Яковлева, г. Чебоксары.

Поступила 10.09.2017

где $\sigma_x, \sigma_y, \tau_{xy}$ — компоненты напряжения в декартовой системе координат. Следуя идеям Хилла [3], условие пластичности для анизотропного материала примем в виде

$$(\tilde{A}\sigma_x - p_0)(\tilde{B}\sigma_y - p_0) - \tilde{C}\tau_{xy}^2 = 0, \qquad \tilde{A}, \tilde{B}, \tilde{C}, p_0 = const.$$
(3)

Константы анизотропи
и $\tilde{A},\,\tilde{B},\,\tilde{C}$ могут быть определены экспериментальным путем

$$\sigma_x = \frac{p_0}{\tilde{A}}, \quad \sigma_y = \tau_{xy} = 0,$$

$$\sigma_y = \frac{p_0}{\tilde{B}}, \quad \sigma_x = \tau_{xy} = 0,$$

$$\tau_{xy} = \frac{p_0}{\tilde{C}}, \quad \sigma_x = \sigma_y = 0.$$
(4)

Перейдем к полярной системе координат. Связь между напряжениями в декартовой системе координат xy и напряжениями в полярной системе координат $\rho\theta$ имеет вид

$$\sigma_{\rm x} = \frac{\sigma_{\rho} + \sigma_{\theta}}{2} + \frac{\sigma_{\rho} - \sigma_{\theta}}{2} \cos 2\theta + \tau_{\rho\theta} \sin 2\theta, \sigma_{\rm y} = \frac{\sigma_{\rho} + \sigma_{\theta}}{2} - \frac{\sigma_{\rho} - \sigma_{\theta}}{2} \cos 2\theta - \tau_{\rho\theta} \sin 2\theta, \tau_{xy} = \frac{\sigma_{\rho} - \sigma_{\theta}}{2} \sin 2\theta + \tau_{\rho\theta} \cos 2\theta.$$
(5)

Из (3) и (5) получим

$$\tilde{A}\tilde{B}(\sigma_{\rho} + \sigma_{\theta})^{2} - (\sigma_{\rho} - \sigma_{\theta})^{2} \left(frac\tilde{A}\tilde{B} + \tilde{C}2 + \frac{\tilde{A}\tilde{B} - \tilde{C}}{2}\cos 4\theta \right) - 2\tau_{\rho\theta}^{2}(\tilde{A}\tilde{B} + \tilde{C} + (\tilde{C} - \tilde{A}\tilde{B})\cos 4\theta) - 2\tau_{\rho}\theta(\sigma_{\rho} - \sigma_{\theta}) \times (\tilde{A}\tilde{B} - \tilde{C})\sin 4\theta - 2(\sigma_{\rho} - \sigma_{\theta})(\tilde{A} - \tilde{B})p_{0}\cos 2\theta - 4\tau_{\rho}\theta(\tilde{A} - \tilde{B})p_{0}\sin 2\theta - 2(\sigma_{\rho} + \sigma_{\theta})(\tilde{A} + \tilde{B})p_{0} = -4p_{0}^{2}.$$
(6)

Все величины, имеющие размерность напряжения, будем считать безразмерными, отнесенными к величине предела текучести k, а величины, имеющие размерность длины, — к радиусу пластической зоны ρ_s^0 . В дальнейшем положим

$$\tilde{A} = 1 + \delta \tilde{a}, \ \tilde{B} = 1 + \delta \tilde{b}, \ \tilde{C} = 1 + \delta \tilde{c}, \ \varepsilon = \delta d_1, 0 \leqslant d_1 \leqslant 1,$$
(7)

где $\tilde{a}, \tilde{b}, \tilde{c}$ — константы анизотропии, $d_1 = const, \delta$ — малый безразмерный параметр. В исходном нулевом приближении при $\delta = 0, \quad \tilde{A} = \tilde{B} = \tilde{C} = 1$ соотношение (6) имеет вид

$$(\sigma_x^{(0)} - p_0)(\sigma_y^{(0)} - p_0) - \tau_{xy}^{(0)2} = 0, \qquad p_0 = const,$$
(8)

Аналогично работам [4], [5], решение будем искать в виде

$$\sigma_{ij} = \sigma_{ij}^{(0)} + \delta \sigma_{ij}^{(I)} + \delta^2 \sigma_{ij}^{(II)} + \dots .$$
(9)

Положим

$$\tau_{\rho\theta}^{(0)} = 0. \tag{10}$$

Припишем компонентам напряжения в пластической зоне индекс p наверху, а упругой – индекс е наверху. В исходном нулевом приближении из (7) - (10) получим

$$\sigma_{\theta}^{(0)p} = p_0. \tag{11}$$

Уравнения равновесия в первом приближении имеют вид

$$\frac{d\sigma_{\rho}^{(0)}}{d\rho} + \frac{\sigma_{\rho}^{(0)} - \sigma_{\theta}^{(0)}}{\rho} = 0.$$
 (12)

Из (11), (12) следует

$$\sigma_{\rho}^{(0)p} = p_0 - \frac{C_1}{\rho}.$$
(13)

Контур отверстия свободен от усилий, т. е. $\sigma_{\rho} = 0$ при $\rho \ge \alpha$. Найдем константу из условия $\sigma_{\rho} = 0$ при $\rho = \alpha$. Тогда соотношение (13) можно переписать в виде

$$\sigma_{\rho}^{(0)p} = p_0 \left(1 - \frac{\alpha}{\rho} \right). \tag{14}$$

Таким образом, компоненты напряжения в пластической области в исходном нулевом состоянии имеют вид

$$\sigma_{\rho}^{(0)p} = p_0 \left(1 - \frac{\alpha}{\rho} \right), \quad \sigma_{\theta}^{(0)p} = p_0, \quad \tau_{\rho\theta}^{(0)p} = 0.$$
(15)

В полярной системе координат, уравнение (1) запишется в виде

$$\rho = \frac{\alpha(1-\delta^2 d_1^2)}{\sqrt{1-2\delta d_1 \cos 2\theta + \delta^2 d_1^2}} = \alpha \left[-1 + \delta d_1 \cos 2\theta - \frac{3}{4} \delta^2 d_1^2 (1 - \cos 4\theta) + \frac{5}{8} \delta^3 d_1^3 (\cos 2\theta + \cos 6\theta) \right] + \dots, \ \rho = \frac{1}{\rho_s^0}, \ \alpha = \frac{a}{\rho_s^0}.$$
(16)

В первом приближении граничные условия на контуре согласно [6] имеют вид

$$\sigma_{\rho}^{(I)p} = -p_0 d_1 \cos 2\theta, \ \tau_{\rho\theta}^{(I)p} = -2p_0 d_1 \sin 2\theta \qquad \text{при} \qquad \rho = \alpha.$$
(17)

В первом приближении компоненты напряжения в пластической зоне имеют вид [6]

$$\sigma_{\rho}^{(I)p} = \left[\frac{15\alpha p_{0}}{8}\left(\tilde{a} + \tilde{b} + \tilde{c}\right)\frac{\ln\rho}{\rho} - \frac{2\alpha p_{0}(\tilde{a} + \tilde{b} + \tilde{c}) + 15C_{1}}{\rho} - \frac{-16C_{2}}{\rho}p^{2}\right]\cos 4\theta - \left[\frac{p_{0}}{2}(\tilde{a} - \tilde{b}) + \frac{3C_{3}}{\rho} + \frac{4C_{4}}{\rho^{2}}\right]\cos 2\theta + \frac{\alpha p_{0}}{8}(\tilde{a} + \tilde{b} - \tilde{c})\frac{\ln\rho}{\rho} - \frac{p_{0}}{2}(\tilde{a} + \tilde{b}) + \frac{C_{5}}{\rho}, \tag{18}$$

$$\sigma_{\theta}^{(I)p} = -\frac{\alpha p_{0}}{8\rho}(\tilde{a} + \tilde{b} - \tilde{c})\cos 4\theta + \frac{p_{0}}{2}(\tilde{a} - \tilde{b})\cos 2\theta + \frac{\alpha p_{0}}{8\rho}(\tilde{a} + \tilde{b} - \tilde{c})\cos 4\theta + \frac{p_{0}}{2}(\tilde{a} - \tilde{b}), \tag{18}$$

$$\tau_{\rho\theta}^{(I)p} = -\left[\frac{\alpha p_{0}}{2\rho}(\tilde{a} + \tilde{b} - \tilde{c}) + \frac{4C_{2}}{\rho}\right]\sin 4\theta + \left[\frac{p_{0}}{2}(\tilde{a} - \tilde{b}) - \frac{2C_{4}}{\rho^{2}}\right]\sin 2\theta.$$

Из (17), (18) получим

$$C_{1} = \frac{p_{0}\alpha \ln \alpha}{8} \left(\tilde{a} + \tilde{b} - \tilde{c} \right), \qquad C_{2} = -\frac{p_{0}\alpha^{2}}{8} \left(\tilde{a} + \tilde{b} - \tilde{c} \right),$$

$$C_{3} = -\frac{p_{0}\alpha}{2} \left(\tilde{a} - \tilde{b} \right) + \frac{p_{0}d_{1}}{3} \left(1 - 4\alpha \right), \qquad C_{4} = \frac{\alpha^{2}p_{0}}{4} \left(\tilde{a} - \tilde{b} \right) + \alpha^{2}p_{0}d_{1}. \qquad (19)$$

$$C_{5} = \frac{p_{0}\alpha}{2} \left(\tilde{a} - \tilde{b} \right) - \frac{p_{0}\alpha \ln \alpha}{8} \left(\tilde{a} + \tilde{b} - \tilde{c} \right).$$

Выражения для напряжения в пластической зоне в первом приближении согласно (18), (19) примут вид

$$\begin{aligned} \sigma_{\rho}^{(I)p} &= \alpha p_0 \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \left[\frac{15 \ln \rho}{8\rho} - \frac{16 + 15 \ln \alpha}{8\rho} + \frac{2\alpha}{\rho^2} \right] \cos 4\theta - \\ &- \left[\frac{p_0 \left(\tilde{a} - \tilde{b} \right)}{2} \left(1 - \frac{3\alpha}{\rho} + \frac{2\alpha^2}{\rho^2} \right) + p_0 d_1 \left(\frac{1 - 4\alpha}{\rho} + \frac{4\alpha^2}{\rho^2} \right) \right] \cos 2\theta + \\ &+ \frac{p_{0\alpha} \ln \alpha}{8\rho} \tilde{c} - p_0 \left(\tilde{a} + \tilde{b} \right) \left[\frac{1}{2} - \frac{\alpha}{2\rho} \right] + \frac{\alpha p_0}{8\rho} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \ln \frac{\rho}{\alpha}, \end{aligned} \tag{20}$$

$$\sigma_{\theta}^{(I)p} &= -\frac{\alpha p_0}{8\rho} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \cos 4\theta + \frac{p_0 \left(\tilde{a} - \tilde{b} \right)}{2} \cos 2\theta - -\frac{p_0 \left(\tilde{a} + \tilde{b} \right)}{2} + \frac{\alpha p_0}{8\rho} \left(\tilde{a} + \tilde{b} - \tilde{c} \right), \end{aligned}$$

$$\tau_{\rho\theta}^{(I)p} &= -\frac{\alpha p_0}{2\rho} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \left(1 - \alpha^2 \right) \sin 4\theta + \left[\frac{p_0 \left(\tilde{a} - \tilde{b} \right)}{2} \times \left(1 - \frac{\alpha^2}{\rho^2} \right) - \frac{2p_0 d_1 \alpha^2}{\rho^2} \right] \sin 2\theta. \end{aligned}$$

Условия сопряжения на упругопластической границе имеют вид

$$\sigma_{\rho}^{p}\big|_{\rho=1} = \sigma_{\rho}^{e}\big|_{\rho=1}; \ \sigma_{\theta}^{p}\big|_{\rho=1} = \sigma_{\theta}^{e}\big|_{\rho=1}.$$

$$(21)$$

Компоненты напряжения в упругой области в первом приближении с учетом условия сопряжения (21) имеют вид

$$\sigma_{\rho}^{(I)e} = K_1 + N_1 \cos 2\theta + M_1 \cos 4\theta,$$

$$\tau_{\rho\theta}^{(I)e} = \bar{N}_1 \sin 2\theta + \bar{M}_1 \sin 4\theta,$$
(22)

где

$$M_{1} = -\alpha p_{0} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \left[2 \left(1 - \alpha \right) + \frac{15 \ln \alpha}{8} \right],$$

$$N_{1} = -p_{0} \left(\alpha - \frac{1}{2} \right) \left[\left(\tilde{a} - \tilde{b} \right) \left(\alpha - 1 \right) + 4d_{1} \left(\alpha - \frac{1}{2} \right) \right],$$

$$K_{1} = \frac{p_{0} \left(\tilde{a} + \tilde{b} \right)}{2} \left(\alpha - 1 - \frac{\alpha \ln \alpha}{4} \right) + \frac{p_{0} \alpha \ln \alpha}{8} c,$$

$$\bar{M}_{1} = -\frac{\alpha p_{0}}{2} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \left(1 - \alpha^{2} \right),$$

$$\bar{N}_{1} = \frac{p_{0} \left(\tilde{a} - \tilde{b} \right)}{2} \left(1 - \alpha^{2} \right) - 2p_{0} d_{1} \alpha^{2}.$$

Справедливы формулы раздела (I), (VI), (VIII), приведенные в монографии [6]. Получим

$$\begin{split} \sigma_{\rho}^{(I)e} &= \frac{p_{0}\left(\tilde{a}+\tilde{b}\right)}{2\rho^{2}} \left(\alpha - 1 - \frac{\alpha \ln \alpha}{4}\right) + \frac{p_{0}\alpha \ln \alpha}{8\rho^{2}} \tilde{c} + \left[\frac{p_{0}\left(\tilde{a}-\tilde{b}\right)}{2} \left(1 - \alpha\right) \left(\frac{3}{\rho^{4}} + \frac{2(\alpha - 2)}{\rho^{2}}\right) - \right. \\ &\left. - p_{0}d_{1} \left(\frac{4\alpha - 1}{\rho^{4}} + \frac{4\alpha^{2} - 8\alpha + 2}{\rho^{2}}\right)\right] \cos 2\theta + \frac{\alpha p_{0}\left(\tilde{a}+\tilde{b}+\tilde{c}\right)}{2} \times \\ &\times \left[\left(1 - \alpha\right) \left(\frac{3(\alpha - 3)}{\rho^{4}} - \frac{4(\alpha - 1)}{\rho^{6}}\right) - \frac{15\ln \alpha}{4} \left(\frac{3}{\rho^{4}} - \frac{2}{\rho^{6}}\right)\right] \cos 4\theta, \\ \sigma_{\theta}^{(I)e} &= -\frac{p_{0}\left(\tilde{a}+\tilde{b}\right)}{2\rho^{2}} \left(\alpha - 1 - \frac{\alpha \ln \alpha}{4}\right) - \frac{p_{0}\alpha \ln \alpha}{\rho^{8}\rho^{2}} \tilde{c} + \\ &+ \left[\frac{3p_{0}\left(\tilde{a}-\tilde{b}\right)}{2\rho^{4}} \left(\alpha - 1\right) - p_{0}d_{1} \frac{4\alpha - 1}{\rho^{4}}\right] \cos 2\theta + \frac{\alpha p_{0}\left(\tilde{a}+\tilde{b}+\tilde{c}\right)}{2} \times \\ &\times \left[\left(1 - \alpha\right) \left(-\frac{\alpha - 3}{\rho^{4}} + \frac{4(\alpha - 1)}{\rho^{6}}\right) + \frac{15\ln \alpha}{4} \left(\frac{1}{\rho^{4}} - \frac{2}{\rho^{6}}\right)\right] \cos 4\theta, \\ \tau_{\rho\theta}^{(I)e} &= \left[\frac{p_{0}\left(\tilde{a}-\tilde{b}\right)}{2} \left(1 - \alpha\right) \left(\frac{3}{2\rho^{4}} + \frac{\alpha - 2}{\rho^{2}}\right) + p_{0}d_{1} \times \\ &\times \left(\frac{1 - 4\alpha}{\rho^{4}} - \frac{2\alpha^{2} - 4\alpha + 1}{\rho^{2}}\right)\right] \sin 2\theta + \alpha p_{0} \left(\tilde{a} + \tilde{b} + \tilde{c}\right) \times \\ &\times \left[\left(1 - \alpha\right) \left(\frac{1 - \alpha}{\rho^{6}} + \frac{\alpha - 3}{\rho^{4}}\right) - \frac{15\ln \alpha}{4} \left(\frac{1}{\rho^{4}} - \frac{1}{\rho^{6}}\right)\right] \sin 4\theta. \end{split}$$

Граница упругопластической зоны $\rho_s^{(I)}$ определим из соотношения

$$\rho_s^{(I)} = \frac{1}{4} \left(\sigma_\theta^{(I)e} - \sigma_\theta^{(I)p} \right) \qquad \text{при} \qquad \rho = 1.$$
(24)

Получим

$$\rho_{s}^{(I)} = \frac{1}{4} \left[\alpha p_{0} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \left(\frac{\ln \alpha}{8} - 1 \right) + \frac{p_{0} \left(\tilde{a} + \tilde{b} \right)}{2} \left(2 - \alpha \right) + \left(\frac{p_{0} \left(\tilde{a} - \tilde{b} \right)}{2} \left(3\alpha - 4 \right) + p_{0} d_{1} \left(4\alpha - 1 \right) \right) \cos 2\theta - \frac{\alpha p_{0}}{8} \left(\tilde{a} + \tilde{b} - \tilde{c} \right) \left(12\alpha^{2} - 16\alpha + 3 + 15\ln \alpha \right) \cos 4\theta \right].$$
(25)

Рис. 1.

Методом малого параметра получено приближенное, аналитическое решение задачи для тонкой пластины ослабленной эллиптическим отверстием при условии сопротивления отрыву. Определены компоненты напряжения в пластической и упругой областях и радиус упругопластической зоны в первом приближении.

ЛИТЕРАТУРА

[1] Роштова А. Н. О плоском напряженном состоянии анизотропного идеальнопластического материала // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. 2007. Т.1. №3. С. 19–22.

[2] Роштова А. Н. Об общих предельных условиях при отрыве для сжимаемых анизотропных сред // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния. 2007. №2. С. 131.

[3] Хилл Р. Математическая теория пластичности. М. : Гостехиздат, 1956. 407 с.

[4] Кузнецов П. Н. Упругопластическое состояние плоскости, подкреплен-ной эксцентрическими включениями, при двуосном растяжении // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. 2009. №2(62). С. 13–18.

[5] Матвеев С. В. Матвеева А. Н., Тихонов С. В. Деформированное состояние анизотропной плоскости, ослабленной отверстием, подкрепленной включением, ограниченной эксцентрической окружностью, при двуосном растяжении // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния. 2016. №1(27). С. 105–114.

[6] Ивлев Д. Д., Ершов Л. В. Метод возмущений в теории упругопластического тела М. : Наука, 1978. 208 с.

S. V. Matveev, A. N. Matveeva, T. I. Rybakova

UNIFORM STRETCHING OF A THIN ANISOTROPIC PLATE, WEAKENED BY AN ELLIPTICAL HOLE, UNDER THE CONDITION OF RESISTANCE TO SEPARATION

I. Ulyanov Chuvash State University, Cheboksary

I. Yakovlev Chuvash State Pedagogical University, Cheboksary

Abstract. The paper considers the uniform stretching of a thin plate weakened by an elliptical hole from an anisotropic elastoplastic material under the condition of tear resistance. When solving the problem, the relations obtained in [1], [2] are used. The anisotropy properties are introduced according to Hill's ideas [3]. By the method of a small parameter, the stress components and the boundary separating the plastic and elastic zones are determined.

Keywords: plasticity, elasticity, linearization, stress, separation, anisotropy.

REFERENCES

[1] Roshtova A. N. O ploskom napryazhennom sostoyanii anizotropnogo ideal'noplasticheskogo materiala // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.YA. Yakovleva. 2007. T.1. \mathbb{N} 3. S. 19–22. (in Russian)

Matveev Sergey Vladimirovich

e-mail: sergio2100@mail.ru, Ph. D., Assoc. Professor, I. Ulyanov Chuvash State University, Cheboksary, Russia.

 $Matveeva\ Alena\ Nikolaevna$

e-mail: roshtova@mail.ru, Ph. D., Assoc. Professor, I. Yakovlev Chuvash State Pedagogical University, Cheboksary, Russia.

Rybakova Tatyana Ivanovna

e-mail: rti2112@mail.ru, Ph. D., Assoc. Professor, I. Yakovlev Chuvash State Pedagogical University, Cheboksary, Russia.

[2] Roshtova A. N. Ob obshchikh predel'nykh usloviyakh pri otryve dlya szhimayemykh anizotropnykh sred // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.YA. Yakovleva. Seriya: Mekhanika predel'nogo sostoyaniya. 2007. №2. S. 131. (in Russian)

[3] Khill R. Matematicheskaya teoriya plastichnosti. M. : Gostekhizdat, 1956. 407 s. (in Russian)

[4] Kuznetsov P. N. Uprugoplasticheskoye sostoyaniye ploskosti, podkreplen-noy ekstsentricheskimi vklyucheniyami, pri dvuosnom rastyazhenii // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. YA. Yakovleva. 2009. №2(62). S. 13–18. (in Russian)

[5] Matveyev C. V. Matveyeva A. N., Tikhonov S. V. Deformirovannoye sostoyaniye anizotropnoy ploskosti, oslablennoy otverstiyem, podkreplennoy vklyucheniyem, ogranichennoy ekstsentricheskoy okruzhnost'yu, pri dvuosnom rastyazhenii // Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. YA. Yakovleva. Seriya: Mekhanika predel'nogo sostoyaniya. 2016. №1(27). C. 105–114. (in Russian)

[6] Ivlev D. D., Yershov L. V. Metod vozmushcheniy v teorii uprugoplasticheskogo tela M. : Nauka, 1978. 208 s. (in Russian)