Ю.В. Немировский

ПРЕДЕЛЬНОЕ СОСТОЯНИЕ ГИБРИДНЫХ ПОЛИГОНАЛЬНЫХ ПЛАСТИН БЕЗ ПРЯМЫХ УГЛОВ

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, г. Новосибирск, Россия

Аннотация. Для класса гибридных слоистых пластин с контурами не имеющих прямых углов при различных условиях нагружения и закрепления контуров, разработан метод определения первых (предельно упругих) и вторых (нагрузка предразрушения) предельных нагрузок. Определены критерии их достижения, получены необходимые системы разрешающих уравнений и описан метод их решения.

Ключевые слова: гибридные слоистые пластины, полигональные, с контуром и без прямых углов, защемление и шарнирное закрепление на контуре, первое (предельно упругое) и второе (состояние предразрушения) предельные состояния, критерий достижения предельных состояний, определение предельных нагрузок.

DOI: 10.26293/chgpu.2019.39.1.014

УДК: 539.374

Введение

Полигональные пластинки различных видов находят широкое применение в различных отраслях машиностроения, судостроительной и авиационной технике и предприятиях стройиндустрии. Расчеты напряженно-деформированного состояния и несущей способности (за редким исключением) касаются прямоугольных и трапецевидных пластин на основе моделей упругих сред [1] или модели идеальных жесткопластических материалов по схеме А.А. Гвоздева. Эти модели давно показыают невозможность выполнения все возрастающих экономических и эксплуатационных требований к изделиям при использовании конструкций из однородных материалов.

Немировский Юрий Владимирович

[©] Немировский Ю. В., 2019

e-mail: nemirov@itam.nsc.ru, доктор физико-математических наук, профессор, главный научный сотрудник, Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, г. Новосибирск, Россия.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта N=19-01-00038.

18 Ю. В. НЕМИРОВСКИЙ

В настоящее время разработано множество эффективных и надежных технологических методов (склейка, различные типы сварок, плазменного и холодного газодинамического напыления, электронной наплавки и др.) позволяющие создавать разнообразные гибридные конструкции из практически любых наборов материалов. Разрабатываемые в настоящее время методы исследования и оценки несущей способности таких композитных конструкций основывается на моделях упругих сред и не позволяют надежно и адекватно оценивать их реальное поведение. Дело в том, что от вновь создаваемых материалов требуют существенного увеличения прочностных и пластических характеристик, что приводит к иным перераспределениям полей напряжений и деформаций в гибридных конструкциях, чем предсказываемые в рамках упругих расчетов. Кроме того, возникающие нелинейные начально-краевые задачи приводят к серьезным аналитическим и численным проблемам при реализации процедур их решения [2, 3].

В представленной работе разработан новый подход к расчету и анализу предельных состояний определенного класса полигональных гибридных и однородных пластин, позволяющих с единых позиций анализировать два принципиально разных предельных состояния: первое — предельно упругое, когда во всех составляющих материалах не будет превышен предел упругости и второе предельное состояние (состояние предразрушения), когда все материалы или некоторые из них деформируются пластически, но ни один из них не разрушается.

Основные уравнения

Будем рассматривать однородные или слоистые изотропные попарно симметричные отсчетной (срединной) поверхности пластинки из различных материалов одинаково сопротивляющихся растяжению и сжатию. Основные уравнения динамического и квазистатического деформирования гибридных слоистых пластин симметричной структуры, учитывающие возможности как упругого, так и неупругого деформирования материалов были получены в работе [4]. При этом в декартовой системе координат (x, y, z) напряжения в j-ом слое при поперечном изгибе пластин определяется равенствами

$$\sigma_{xj} = \frac{\Phi_j(\varepsilon_u)}{\varepsilon_u} \left(\varepsilon_x + \frac{1}{2} \varepsilon_y \right), \quad \tau_j = \frac{\Phi_j(\varepsilon_u)}{\varepsilon_u} \gamma, \quad \sigma_{yj} = \frac{\Phi_j(\varepsilon_u)}{\varepsilon_y + \frac{1}{2} \varepsilon_x}, \quad (j = 1, 2, ..., n). \quad (1)$$

Деформации $\varepsilon_x, \varepsilon_y, \gamma$ связаны с прогибом w(x,y) пластины выражениями

$$\varepsilon_x = -z\kappa_x, \quad \varepsilon_y = -z\kappa_y, \quad \gamma = -z\kappa_{xy},$$
 (2)

$$\kappa_x = \frac{\partial^2 w}{\partial x^2}, \quad \kappa_y = \frac{\partial^2 w}{\partial y^2}, \quad \kappa_{xy} = \frac{\partial^2 w}{\partial x \partial y},$$
(3)

где z — координата, отсчитываемая от срединной поверхности вдоль нормали к ней,

$$\varepsilon_u = |z|\kappa_u, \quad \kappa_u = \left(\kappa_x^2 + \kappa_y^2 + \kappa_x \kappa_y + \kappa_{xy}^2\right).$$
 (4)

Изгибающие M_x, M_y и крутящие M_{xy} моменты определяются выражениями

$$M_{x} = 2\sum_{j=1}^{n} \int_{h_{j-1}}^{h_{j}} \sigma_{xj} z dz, \quad M_{y} = 2\sum_{j=1}^{n} \int_{h_{j-1}}^{h_{j}} \sigma_{yj} z dz,$$

$$M_{xy} = 2\sum_{j=1}^{n} \int_{h_{j-1}}^{h_{j}} \tau_{j} z dz, \quad (h_{0} = 0),$$
(5)

где h_i — координаты границы раздела слоев.

Уравнения равновесия при поперечном изгибе имеют вид

$$\frac{\partial^2 M_x}{\partial x^2} + 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} + q_0 \varphi_1(x, y) = 0, \tag{6}$$

 q_0 — амплитуда нагрузки, $\varphi(x,y)$ — функция ее распределения по поверхности пластинки

Для материалов одинаково сопротивляющихся растяжению и сжатию диаграммы деформирования достаточно надежно могут быть аппроксимированы кубическими параболами [3] и таким образом можно принять зависимости

$$\Phi_j(\varepsilon_u) = A_j \varepsilon_u + B_j \varepsilon_u^3, \quad (0 \le \varepsilon_u \le \varepsilon_j^*), \tag{7}$$

$$B_j = \frac{A_j}{3(\varepsilon_j^*)^2}, \quad \varepsilon_j^* = \frac{3\sigma_j^*}{2A_j^*}, \tag{8}$$

 $A_j, \ \sigma_j^*, \ \varepsilon_j^*$ — модуль Юнга, предел прочности и предельная деформация предразрушения материала j-го слоя гибридной пластинки.

Зависимости (7) позволяют рассматривать как упругое (при $B_j = 0$), так и неупругое (при $B_j \neq 0$) состояния материала j-го слоя.

Для слоистых конструкций по требованиям эксплуатации важно рассматривать два предельных состояния [5]: первое - предельно упругое, когда для всех составляющих материалов $B_j=0$ и $\varepsilon_u\leq\varepsilon_0=\min(\varepsilon_1^0,\varepsilon_2^0,...,\varepsilon_n^0)$, где $\varepsilon_j^0=\frac{\sigma_{0j}}{A_j}$ и σ_{0j} — предел упругости j-го слоя. Второе (состояние предразрушения), когда $B_j\neq 0$, $\varepsilon_u\leq\varepsilon_*=\min(\varepsilon_1^*,\varepsilon_2^*,...,\varepsilon_n^*)$, ε_k^* — предельная деформация предразрушения k-го слоя материала пластинки.

При этом по характеру расположения материалов и геометрическим параметрам слоев будем выделять подклассы гибридных рациональных конструкций и гибридных не вполне рациональных конструкций. Под гибридными рациональными будем понимать такие слоистые гибридные пластинки, в которых при заданном типе нагружения и закрепления первое или второе предельное состояние реализуется одновременно во всех материалах. Это означает, с учетом равенства (4), что для таких пластин в случае первого предельного состояния расположение материалов и геометрические параметры слоев должны удовлетворять соотношениям

$$h_j \kappa_u^0 = \varepsilon_j^0, \quad j = 1, 2, ..., n, \tag{9}$$

$$\kappa_u^0 = \frac{\varepsilon_1^0}{h_1}, \quad \frac{h_2}{h_1} = \frac{\varepsilon_2^0}{\varepsilon_1^0}, \quad \frac{h_3}{h_1} = \frac{\varepsilon_3^0}{\varepsilon_1^0}, \quad ..., \frac{h_n}{h_1} = \frac{\varepsilon_n^0}{\varepsilon_1^0}, \tag{10}$$

$$\varepsilon_n^0 > \varepsilon_{n-1}^0 > \dots > \varepsilon_2^0 > \varepsilon_1^0. \tag{11}$$

20 Ю. В. НЕМИРОВСКИЙ

Аналогично, для второго предельного состояния гибридных рациональных пластин должны выполняться соотношения

$$\kappa_u^* = \frac{\varepsilon_1^*}{h_1}, \quad \frac{h_2}{h_1} = \frac{\varepsilon_2^*}{\varepsilon_1^*}, \quad \frac{h_3}{h_1} = \frac{\varepsilon_3^*}{\varepsilon_1^*}, \quad ..., \frac{h_n}{h_1} = \frac{\varepsilon_n^*}{\varepsilon_1^*}, \tag{12}$$

$$\varepsilon_n^* > \varepsilon_{n-1}^* > \dots > \varepsilon_2^* > \varepsilon_1^*. \tag{13}$$

которые определяют порядок расстановки материалов по толщине и соотношения между геометрическими размерами слоев.

Значительно более широкий подкласс «не вполне рациональных проектов» при отсутствии ограничивающих требований на порядок расстановки слоев и взаимосвязи их геометрических параметров можно анализировать опираясь на концепцию «слабейшего звена» и закономерности (1)-(4) в конкретных случаях.

Из заданного материалов рассматриваемых слоистых пластин «слабейшее звено по первому предельному состоянию» определяется требованием

$$\varepsilon_0 = \min(\varepsilon_1^0, \varepsilon_2^0, ..., \varepsilon_n^0), \tag{14}$$

а по второму предельному состоянию — требованиям

$$\varepsilon_* = \min(\varepsilon_1^*, \varepsilon_2^*, ..., \varepsilon_n^*). \tag{15}$$

Тогда, если в рассматриваемой слоистой пластине k-й слой материала является слабейшим звеном по первому предельному состоянию, то для этого случая

$$B_j = 0, \quad (j = 1, 2, ..., n), \quad \text{if} \quad \tilde{\kappa}_u^0 = \frac{\varepsilon_0}{h_k}, \quad \tilde{\kappa}_u^0 = \max_{x, y \in S} \kappa_u(x, y),$$
 (16)

и равенство (16) позволяет определить амплитуду первой предельной нагрузки в этом случае. Рассматривая все возможные перестановки слоев из данного набора материалов можно провести сравнительный анализ изменения первых предельных нагрузок и допустимых геометрических параметров

$$h_m < \frac{\varepsilon_m^0}{\varepsilon_0} h_k, \quad m \neq k.$$
 (17)

Для второго предельного состояния аналогичные выражения будут иметь вид

$$\sigma_k^* = A_k h_k \tilde{\kappa}_u \left(1 + \frac{B_k}{A_k} h_k^2 \tilde{\kappa}_u^2 \right), \quad h_m < \frac{\varepsilon_m^*}{\varepsilon_*} h_k, \quad \tilde{\kappa}_u = \max_{x, y \in S} \kappa_u(x, y).$$
 (18)

Пользуясь выражениями (1)-(5) и (7) для M_x , M_y и M_{xy} получим выражения

$$M_x = D_1 R_1(w) + D_2 R_2(w),$$

$$M_y = D_1 R_3(w) + D_2 R_4(w),$$

$$M_{xy} = D_1 R_5(w) + D_2 R_6(w),$$
(19)

где

$$R_{1}(w) = 2\kappa_{x} + \kappa_{y}, \quad R_{2}(w) = (2\kappa_{x} + \kappa_{y})\kappa_{u}^{2}$$

$$R_{3}(w) = 2\kappa_{y} + \kappa_{x}, \quad R_{4}(w) = (2\kappa_{y} + \kappa_{x})\kappa_{u}^{2}$$

$$R_{5}(w) = \kappa_{xy}, \quad R_{6}(w) = \kappa_{xy}\kappa_{u}^{2},$$
(20)

$$\kappa_u^2 = \kappa_x^2 + \kappa_y^2 + \kappa_x \kappa_y + \kappa_{xy}^2, \tag{21}$$

$$D_1 = \frac{1}{3} \sum_{j=1}^n A_j \left(h_j^3 - h_{j-1}^3 \right), \quad D_2 = \frac{1}{5} \sum_{j=1}^n B_j \left(h_j^5 - h_{j-1}^5 \right), \tag{22}$$

и для прогиба w(x,y) из (6) получим уравнение

$$L_1(w) + L_2(w) + q_0\varphi(x, y) = 0, (23)$$

$$L_1(w) = D_1 \left[\frac{\partial^2 R_1}{\partial x^2} + 2 \frac{\partial^2 R_5}{\partial x \partial y} + \frac{\partial^2 R_3}{\partial y^2} \right],$$

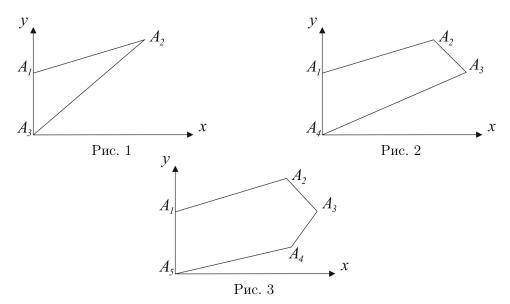
$$L_2(w) = D_2 \left[\frac{\partial^2 R_2}{\partial x^2} + 2 \frac{\partial^2 R_6}{\partial x \partial y} + \frac{\partial^2 R_4}{\partial y^2} \right].$$
(24)

Необходимые краевые условия для уравнения (23) получаются в виде классических соотношений для прогиба классической кирхгофовской теории пластин в зависимости от формы контура и условий его закрепления.

Метод решения

Будем рассматривать подкласс выпуклых полигональных пластин, контуры которых не содержат прямых углов.

Некоторые такие пластины такого типа изображены на рис. 1, 2, 3.



Свяжем систему декартовых координат (x,y) с одной из сторон (x,y) с одной из сторон A_0A_1 рассматриваемых многоугольников, как указано на рис. 1-3 и обозначим координаты вершин $A_i(x_i,y_i), A_0(x_0,y_0)$ и будем считать в дальнейшем для простоты $x_0=0,y_0=0$. Тогда уравнения прямых $A_{i-1}A_i$ будут иметь вид

$$A_0 A_1: \quad x = 0, \quad 0 \le y \le y_1,$$
 (25)

$$A_i A_{i+1}: \quad \Psi_i(x,y) = \frac{x - x_i}{x_{i+1} - x_i} + \frac{y - y_i}{y_{i+1} - y_i} - 1 = 0, \quad y_i \le y \le y_{i+1}, \quad (i = 1, 2, ...)$$
 (26)

22 Ю. В. НЕМИРОВСКИЙ

Будем считать в дальнейшем, что на стороне A_0A_1 пластина может быть защемлена или шарнирно оперта, а на остальных сторонах — защемлена.

Учитывая сложный нелинейный характер разрешающего уравнения (23) для прогиба w(x,y) дальнейшее решение задачи будем строить на основе удобных модификаций метода Бубнова-Галеркина [6].

В первом приближении прогиб для соответствующих пластин будем искать в форме

$$w(x,y) = C_k \Psi_k(x,y), \tag{27}$$

где $C_k = const$, а функция $\Psi_k(x,y)$ подбирается так, чтобы были выполнены соответствующие граничные условия закрепления на контуре рассматриваемой пластины.

Тогда для треугольной пластины соответствующей рис. 1 в случае защемления всех сторон будем иметь

$$w_1(x,y) = C_1 \Psi_1(x,y)$$

$$\Psi_1(x,y) = x^2 \Psi_1^2(x,y) \Psi_2^2(x,y),$$
(28)

а в случае шарнирного закрепления стороны A_0A_1

$$w_2(x,y) = C_2 \Psi_2(x,y)$$

$$\Psi_2(x,y) = x^3 \Psi_1^2(x,y) \Psi_2^2(x,y),$$
(29)

Для четырехугольной защемленной пластинки на рис. 2 будем иметь

$$w_3(x,y) = C_3 \Psi_3(x,y)$$

$$\Psi_3(x,y) = x^2 \Psi_1^2(x,y) \Psi_2^2(x,y) \Psi_3^2(x,y),$$
(30)

и для той же пластины с шарнирным закреплением стороны A_0A_1

$$w_4(x,y) = C_4 \Psi_4(x,y)$$

$$\Psi_4(x,y) = x^3 \Psi_1^2(x,y) \Psi_2^2(x,y) \Psi_3^2(x,y).$$
(31)

Аналогичные зависимости можно выписать и для пятиугольных пластин на рис. 3. Путем повсеместной замены $x \leftrightarrow y$ можно получить необходимые формулы в случае, когда шарнирно опертая сторона будет расположена по оси x.

После выполнения процедуры Бубнова-Галеркина для нахождения связи постоянных C_k с амплитудой действующих нагрузок в случае первого предельного состояния получим линейное алгебраическое уравнение, а в случае второго предельного состояния кубическое уравнение, действительный корень которого определяется по известным формулам [7]. Получив таким образом решение задачи в первом приближении и решая на его основе с помощью известных процедур задачу: найти $\max_{x,y \in S} \kappa_u^2$ и пользуясь критериями (9), (14), (16) определим соответствующие им амплитуды предельных нагрузок.

ЛИТЕРАТУРА

- [1] Власов В. З. Тонкостенные пространственные системы. Москва: Госстройиздат, 1958. 502 с.
- [2] Кошур В. Д., Немировский Ю. В. Континуальные и дискретные модели динамического деформирования элементов конструкций. Новосибирск: Наука, 1990. 190 с.
- [3] Немировский Ю. В. Прогнозирование нелинейного деформирования гибридных композитных материалов // Проблемы нелинейной механики деформируемого твердого тела. Труды второй международной конференции. Казань: Казанский государственный университет, 2009.

- [4] Немировский Ю. В. Динамика пластических слоисто-волокнистых пластин // Материалы X Всероссийской конференции по механике деформируемого твердого тела. Самара: Самарский государственный технический университет, 2017. С. 106–110.
- [5] Немировский Ю. В. Второе предельное состояние полиметаллических круглых и кольцевых пластин // Вестник Чувашского государственного педагогического университета им. И. Я. Яковлева. Серия: Механика предельного состояния. 2015. № 1(23). С. 189–195.
- [6] Флетчер К. Численные методы на основе метода Галеркина. Мир: Москва, 1988. 352 с.
- [7] Выгодский М. Я. Справочник по высшей математике. Восьмое изд. Наука: Москва, 1966. 870 с.

Yu. V. Nemirovskii

LIMIT STATE OF HYBRID POLYGONAL PLATES WITHOUT RIGHT ANGLES

S. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the RAS, Novosibirsk, Russia

Abstract. For a class of hybrid laminated plates with contours that do not have right angles under various conditions of loading and fixing the contours, a method has been developed for determining the first (extremely elastic) and second (pre-failure load) ultimate loads. The criteria for their achievements, obtained the necessary systems of solving equations and described the method of their solution.

Keywords: hybrid layered plates, polygonal, with and without contour of right angles, pinching and hinging on the contour, the first (extremely elastic) and second (pre-fracture state) limit states, the criterion of reaching the limit states, the determination of the limit loads.

REFERENCES

- [1] Vlasov V. Z. Thin-walled spatial systems. Moscow: Gosstroyizdat, 1958. 502 p. (in Russian).
- [2] Koshur I. D., Nemirovskii Y. V. Continuous and discrete models of dynamic deformation structural elements. Novosibirsk: Nauka, 1990. 190 p. (in Russian).
- [3] Nemirovskii Y. V. Predicting Non-Linear Deformation of Hybrid composite materials // Problems of nonlinear mechanics of a deformable solid body. Proceedings of the second international conference. Kazan: Kazan State University, 2009. (in Russian).
- [4] Nemirovskii Y. V. Dynamics of plastic layered fiber plates // Materials of the X All-Russian Conference on Mechanics deformable solid body. Samara: Samara State Technical University, 2017. P. 106–110. (in Russian).
- [5] Nemirovskii Y. V. The second limit state of polymetallic round and ring plates // Bulletin of the Yakovlev Chuvash State Pedagogical University. Series: Mechanics of Limit State. 2015. no. 1 (23). P. 189–195. (in Russian).
- [6] Fletcher K. Numerical methods based on the Galerkin method. Mir: Moscow, 1988. 352 p. (in Russian).
- [7] Vygodsky M. I. Higher Mathematics Handbook. Eighth edition. Nauka: Moscow, 1966. 870 p. (in Russian).

Nemirovskii Yuri Vladimirovich, Dr. Sci. Phys. & Math., Professor, Leading Research Worker, S. Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the RAS, Novosibirsk, Russia.