М. Н. Перельмутер

МОДЕЛЬ АДГЕЗИОННОГО СОЕДИНЕНИЯ ПОЛИМЕРОВ

Институт проблем механики им. А. Ю. Ишлинского РАН, г. Москва, Россия

Аннотация. Рассмотрена механическая модель адгезионного соединения полимеров. Полагается, что связи между различными полимерами образованы пучками молекул полимераактиватора адгезии. Учитывается, что молекулы полимера-активатора могут образовывать между соединяемыми полимерами однозвенные и многозвенные связи. Получены кривые деформирования связей в концевой области трещины.

Ключевые слова: полимеры, адгезия, кривые деформирования связей, концевая область трещины.

DOI: 10.37972/chgpu.2020.46.4.010

УДК: 539.375

Значительное повышение прочности адгезионного соединения различных полимеров происходит при использовании в качестве промежуточного слоя между ними специальных полимерных материалов, химически совместимых с каждым из них [1, 2].

Молекулы такого молекулярного "клея" проникают в соединяемые материалы и образуют связи, значительно повышающие прочность соединения. При наличии на границе соединения полимеров трещины, такие связи формируют концевую область трещины в процессе самозалечивания [3]. Для получения закона деформирования связей в концевой области трещины при квазистатическом нагружении используем подход, предложенный в [2] для связей, образованных пучками молекул полимера со степенью полимеризации N и размером мономерного звена a_0 . Будем полагать, что связи деформируются упруго до определенной величины напряжения σ_m и соответствующего этому напряжению раскрытия трещины u_m . При раскрытии трещины $U \ge u_m$ закон деформирования связей становится нелинейным и напряжения в связях уменьшаются. Молекулы промежуточного слоя могут образовывать между соединяемыми полимерами, по терминологии [2], однозвенные и многозвенные связи (см. рис. 1).

Обозначим число однозвенных связей на единицу поверхности соединения материалов (плотность связей) R_1 , а плотность многозвенных связей - R_2 . В общем случае

© Перельмутер М. Н., 2020

Перельмутер Михаил Натанович

e-mail: perelm@ipmnet.ru, доктор физико-математических наук, ведущий научный сотрудник, Институт проблем механики им. А.Ю. Ишлинского РАН, г. Москва, Россия.

Работа выполнена при финансовой поддержке Российского Научного Фонда (проект №19-19-00616).

Поступила 01.07.2020

Рис. 1. (а) - Однозвенные и (b) - многозвенные связи, образованные молекулами (M) соединительного слоя

возможно присутствие обоих типов связей. Сегмент полимерной цепи между материалами деформируется упруго до тех пор, пока действующая на него растягивающая сила f не достигнет критической величины

$$f^* = \frac{kT}{a_0},\tag{1}$$

где k - постоянная Больцмана, T - абсолютная температура.

При $f \leq f^*$ напряжение в связях σ прямо пропорционально раскрытию трещины U (κ - жесткость связей):

$$\sigma = \kappa U \tag{2}$$

При $f = f^*$ начинается процесс вытягивания связей из материала. Зависимость напряжений в связях от раскрытия трещины запишем, исходя из уравнения (4.1) работы [2],

$$\sigma(u) = \sigma_1^* + \frac{\sigma_2^*}{(1+\xi)^2}, \quad \xi = \frac{U - u_m}{h^*}, \tag{3}$$

где $h^* = a_0 \sqrt{N}$, σ_1^* и σ_2^* критические напряжения начала вытягивания однозвенных и многозвенных связей из материала, определяемые как

$$\sigma_1^* = f^* R_1, \quad \sigma_2^* = f^* R_2 \sqrt{N}$$
(4)

Из (2) и (4) следует, что критическое напряжение, при котором происходит изменение характера деформирования связей, определяется выражением

$$\sigma(u_m) = \sigma_m = \sigma_1^* + \sigma_2^*,\tag{5}$$

а раскрытие трещины, соответствующее изменению характера деформирования связей, определяется как

$$u_m = \frac{\sigma_m}{\kappa} \tag{6}$$

Оценим жесткость связей κ , образованных пучками полимерных молекул. Пусть f_{cr} - сила, необходимая для разрыва полимерной цепи, а $u_{cr} \sim \vartheta a_0$ - критическое удлинение мономерного звена при разрыве ($\vartheta \leq 1$). Тогда полное удлинение полимерной цепи

$$u_{cr}^* \sim N u_{cr} \sim \vartheta N a_0 \tag{7}$$

Рис. 2. Кривые деформирования многозвенных связей в концевой области трещины, $u_m=2.21\,{\rm mm},\,S=0.005\,{\rm H/m},\,T=400K,\,N=400$

Жесткость полимерной цепи определяется как:

$$S_1 = \frac{f_{cr}}{u_{cr}^*} \cong \frac{f_{cr}}{\vartheta N a_0} \tag{8}$$

Другая оценка жесткости полимерной цепи следует из энергетических соображений [4]:

$$S_2 = \frac{3kT}{Na_0^2} \tag{9}$$

Критическая сила для разрыва полимерной цепи составляет $f_{cr}\approx 1\cdot 10^{-9}{\rm H}$ [4]. При $a_0\sim 0.5\cdot 10^{-9}{\rm M},\,N=400,\,T=400^\circ K$ и $\vartheta=1$ (оценка по верхней границе) получаем $S_1=0.5\cdot 10^{-2}{\rm H/m}$ и $S_2=0.55\cdot 10^{-4}{\rm H/m}.$ Можно полагать, что фактическая жесткость полимерной цепи S изменяется в интервале

$$S_2 < S < S_1$$

Удельная жесткость связей κ (жесткость на единицу площади поверхности), необходимая в выражении (2),

$$\kappa = SR, \quad R = R_1 + R_2 \sqrt{N} \tag{10}$$

где *R*- плотность связей на участке соединения материалов до начала выдергивания связей.

В модели концевой области трещины на границе соединения материалов [5-7] жесткость связей определяется выражением:

$$\kappa = \frac{E_b}{H} \tag{11}$$

Рис. 3. Кривые деформирования многозвенных связей в концевой области трещины, изменение степени полимеризации, T = 400 K

где *H* - линейный размер, пропорциональный толщине зоны неоднородности на участке соединения материалов, *E_b* - эффективный модуль упругости связей. Из выражений (10) и (11) получаем оценку для эффективного модуля упругости связей:

$$E_b = SH(R_1 + R_2\sqrt{N}) \tag{12}$$

Величина раскрытия трещины, соответствующая изменению закона деформирования связей, определяется так:

$$u_m = \frac{f^*}{S} \tag{13}$$

Рассмотрим оценки параметра H, связанного с толщиной зоны неоднородности на границе соединения полимерных материалов. Толщина слоя неоднородности на границе соединения плохо смешиваемых полимеров со степенями полимеризации $N_1 \approx N_2 \approx N$ определяется как [4,8]:

$$\omega_1 = 2a_0\sqrt{\frac{N}{6}}$$

При наличии промежуточного слоя полимера-усилителя адгезии толщина слоя неоднородности может возрасти до величины $\omega_2 \cong a_0 N$. Ввиду этого, принимаем эту верхнюю границу в качестве оценки величины параметра H

$$\omega_1 < H \cong a_0 N$$

При заданных параметрах полимерной цепи, значениях плотностей связей $R_1 = 1 \cdot 10^{18} \,\mathrm{m}^{-2}, R_2 = 0.1 R_1$ (см. [9]) и жесткости связей, определяемой выражениями (8)

Рис. 4. Кривые деформирования многозвенных связей в концевой области трещины, изменение жесткости связи, T = 400 K

и (9), получаем оценки модуля упругости связей:

$$E_{2b} < E_b < E_{1b},$$

где $E_{1b} = 1.1 \cdot 10^9 \,\text{Па}, E_{2b} = 1.2 \cdot 10^7 \,\text{Па}.$ Отметим, что величина E_{1b} близка к модулю упругости однородного полимера.

В итоге, кривые деформирования связей определяются выражением:

$$\sigma\left(U\right) = \begin{cases} \frac{f_{cr}}{\vartheta N a_0} (R_1 + R_2 \sqrt{N}) U, & U < u_m \\ f^* \left(R_1 + \frac{R_2 \sqrt{N}}{\left(1 + \frac{U - u_m}{h^*}\right)^2} \right), & U \ge u_m \end{cases}$$
(14)

Кривые деформирования связей в концевой области трещины, на границе соединения материалов, получены при следующих значениях исходных данных: 1) $T = 400^{\circ} K$ -температура материалов; 2) $R_1 = 1 \cdot 10^{18} M^{-2}$ - плотность однозвенных связей на единицу площади поверхности; 3) $\alpha = R_2/R_1 = 0.1$; 0.2; 0.3 - относительная плотность многозвенных связей на границе соединения материалов; 4) $a_0 = 0.5 \cdot 10^{-9} M$ - размер мономерного звена молекулы полимера; 5) $f_{cr} = 1 \cdot 10^{-9} H$. Жесткость полимерной цепи оценивалась по верхней границе из выражения (8). В этом случае раскрытие трещины u_m , соответствующее изменению закона деформирования связей (см. (6)), можно представить как

$$u_m = \frac{f^*}{f_{cr}} N a_0 \tag{15}$$

Кривые деформирования связей для N = 400 (жесткость связей $S = 0.005 \,\mathrm{H/m}$)

приведены на рис.2. Параметр u_m при фиксированном значении степени полимеризации постоянен, а жесткость связей и предельная величина упругих напряжений возрастают при увеличении числа многозвенных связей (см. (4)). Кривые деформирования связей при фиксированном количестве многозвенных связей ($\alpha = 0.2$) и различных степенях полимеризации (следовательно, различной жёсткости связей) приведены на рис.3. Увеличение степени полимеризации N приводит к уменьшению жесткости связей на линейно-упругом участке деформирования, возрастанию предельных напряжений в связях и увеличению предельного раскрытия трещины u_m . Уменьшение жесткости полимерной цепи S, при соответствующем уменьшении величины f_{cr} (при $N = 400, \alpha = 0.2$), приводит к возрастанию участка линейно-упругого деформирования связей при постоянной величине максимальных упругих напряжений σ_m , (см. рис.4). При $U \to \infty$ все связи становятся однозвенными и напряжение в связях стремиться в величине $\sigma_1^* = f^* R_1$.

Кривые деформирования связей в концевой области трещины, полученные исходя из структуры пучков молекул полимера, являются многопараметрическими и могут быть использованы при разработке микромеханических моделей формирования, роста и самозалечивания трещин [3].

ЛИТЕРАТУРА

- Creton C., Kramer E. J., Hui C. Y., Brown H. R. Failure mechanisms of polymer interfaces reinforced with block copolymers // Macromolecules. 1992. Vol. 25. no. 12. P. 3075–3088.
- Ji H., De Gennes P. G. Adhesion via connector molecules: the many-stitch problem // Macromolecules. 1993. Vol. 26. no. 3. P. 520–525.
- [3] Перельмутер М. Н. Моделирование кинетики самозалечивания трещин // Физическая мезомеханика. 2019. Т. 22. № 4. С. 47-55.
- [4] Гросберг А. Ю., Хохлов А. Р. Статистическая физика макромолекул. Наука, 1989. С. 341.
- [5] Гольдштейн Р. В., Перельмутер М. Н. Трещина на границе соединения материалов со связями между берегами // Изв. РАН. Механика твердого тела. 2001. № 1. С. 94–112.
- [6] Гольдштейн Р. В., Перельмутер М. Н. Моделирование трещиностойкости композиционных материалов // Вычислительная механика сплошных сред. 2009. Т. 2, № 2. С. 22–39.
- [7] Гольдштейн Р. В., Перельмутер М. Н. О кинетике формирования и роста трещин на границе соединения материалов // Изв. РАН. Механика твердого тела. 2012. № 4. С. 32–49.
- [8] Hui C. Y., Ruina A., Creton C., Kramer E. J. Micromechanics of crack growth into a craze in a polymer glass // Macromolecules. 1992. Vol. 25, no. 15. P. 3948–3955.
- [9] Washiyama J., Kramer E. J., Creton C. F., Hui C.-Y. Chain pullout fracture of polymer interfaces // Macromolecules. 1994. Vol. 27, no. 8. P. 2019–2024.

M. N. Perelmuter

MODEL OF ADHESIVE POLYMER BONDING

Institute for Problems in Mechanics of RAS, Moscow, Russia

Abstract. Mechanical model of adhesion polymer bonding is considered. It is assumed that bonds between different polymers are formed by bundles of molecules polymer-activator of adhesion. It is taken into account that molecules of the polymer-activator can form single-link and multi-link bonds between polymers. Deformation curves of bonds in the crack bridged zone are obtained.

Keywords: polymers, adhesion, bonds deformation curves, crack bridged zone.

REFERENCES

- Creton C., Kramer E. J., Hui C. Y., Brown H. R. Failure mechanisms of polymer interfaces reinforced with block copolymers // Macromolecules. 1992. Vol. 25. no. 12. P. 3075-3088.
- [2] Ji H., De Gennes P. G. Adhesion via connector molecules: the many-stitch problem // Macromolecules. 1993. Vol. 26. no. 3. P. 520-525.
- [3] Perelmuter M. N. Modeling the kinetics of fracture self-healing // Physical mesomechanics. 2019.Vol. 22.No. 4.P. 47-55.
- [4] Grosberg A. Yu., Khokhlov AR Statistical physics of macromolecules. Nauka, 1989, p. 341.
- [5] Goldstein R. V., Perelmuter M. N. Crack at the junction materials with connections between banks // Izv. RAS. Solid mechanics body. 2001. No. 1. P. 94–112.
- [6] Goldstein RV, Perelmuter MN Modeling of crack resistance of composite materials // Computational Continuum Mechanics. 2009. Vol. 2, No. 2. P. 22–39.
- [7] Goldstein R.V., Perelmuter M.N.On the kinetics of formation and growth of cracks at the interface between materials. Izv. RAS. Mechanics solid. 2012. No. 4. P. 32–49.
- [8] Hui C. Y., Ruina A., Creton C., Kramer E. J. Micromechanics of crack growth into a craze in a polymer glass // Macromolecules. 1992. Vol. 25, no. 15.P. 3948–3955.
- [9] Washiyama J., Kramer E. J., Creton C. F., Hui C.-Y. Chain pullout fracture of polymer interfaces // Macromolecules. 1994. Vol. 27, no. 8. P. 2019–2024.

Perelmuter, Mikhail Natanovich Dr. Phys-Math. Sci., A. Y. Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia.