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Introduction. The polynomial solutions to linear constant coe!cient PDE(’s)
is the well-known problem of algebra; see, for example, [1–6]. The most part of the
methods to find polynomial solutions to PDE’s is based on complicated general
algebra approaches (like a primary decomposition).

Certainly, substituting a polynomial with unknown (constant) coe!cients to
PDE(’s) and equaling the result to zero, we obtain a linear algebraic system that the
solution of the system defines constant coe!cients of the polynomial(s). However,
this solution of the problem is very one-sided: in general, we do not know existence,
dimension, basis of the polynomial solution.

To find polynomial solutions to linear constant coe!cient PDE’s we o"er a
matrix method. The matrix method was stimulated by a generalization of the
Strang-Fix conditions, see [7, 8]. Our method enables to determine some (linear
algebra) characteristics of a solution space such as dimension, basis, a!ne-invariance,
maximal total degree of polynomials, etc.

Note our matrix method is applicable if the polynomials that induce PDE’s have
constant terms. In the case of constant terms the polynomials that are solutions to
PDE’s must be multiplied by exponential(s).

Moreover, our matrix method allows to solve PDE with polynomial (multiplied
by an exponential, in general) right-hand side.

The polynomial solutions (multiplied by exponentials) to the well-known
di"erential equations (like Laplace’s equation), when we take a root of the symbol
of di"erential operator that the root is not the origin, see also [9], can be obtained.
So, the shift of a di"erential equation is equivalent to the multiplication, by the
corresponding exponent, of a polynomial solution of the di"erential equation.

It is well know, see [1], that the degree of the polynomial that is a solution
to constant coe!cient linear PDE is arbitrary large. And our method allows to
generalize this result to polynomials multiplied by exponentials.

Note that the matrix method is valid for polynomials that induce PDE’s with
coe!cients from any algebraically closed field. Moreover, the method can be directly
algorithmized.

The paper is organized as follows. Section 1 contains used in the paper notations
and definitions. In particular, in Subsection 1.2, the lexicographically ordered sets
of monomials and derivatives are introduced. Section 2 is devoted to the matrix of
the linear system; in Subsections 2.1, a method to construct the matrix is presented,
and, in Subsection 2.2, some properties of the matrix are discussed. In Section 3,
the matrix method to solve (in particular, induced by inhomogeneous polynomials)
PDE’s is discussed. Moreover, in Subsection 3.3, the matrix method to solve PDE
with a polynomial right-hand side is considered. Section 4 is devoted to polynomial
solutions to some PDE’s.

1. Notations and definitions

1.1. Basic notations. Let d → N, d ↑ 2, be the number of independent variables.
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Let I be the identity operator. Let ωij :=

{
0 if i ↓= j,

1 if i = j
be the Kronecker delta

and ω be the Dirac delta-distribution.
A multi-index ε is a d-tuple (ε1, . . . ,εd) with its components being nonnegative

integers, i. e., ε → Zd

→0. The length of a multi-index ε := (ε1, . . . ,εd) → Zd

→0 is
defined as ε1 + · · · + εd and denoted by |ε|. For multi-indices ε := (ε1, . . . ,εd),
ϑ := (ϑ1, . . . , ϑd), we write ϑ ↔ ε if ϑj ↔ εj for all j = 1, . . . , d. The factorial of
ε := (ε1, . . . ,εd) → Zd

→0 is ε! := ε1! · · ·εd!. The binomial coe!cient for multi-indices
ε, ϑ is (

ε

ϑ

)
:=

(
ε1

ϑ1

)
· · ·

(
εd

ϑd

)
=

ε!

ϑ!(ε↗ ϑ)!
.

By definition, put (
ε

ϑ

)
= 0 if ϑ ⊋ ε. (1)

By xω, where x := (x1, . . . , xd), ε := (ε1, . . . ,εd) → Zd

→0, denote a monomial
xω1
1 · · · xωd

d
. Note that the total degree of xω is |ε|. By !l, l → Z→0, denote the

space of (homogeneous) polynomials that the total degree of the polynomials
is equal to l: !l := span

{
xω

: ε → Zd

→0, |ε| = l
}
; by !↑l denote the space of

polynomials that the total degree of the polynomials is less than or equal to l:
!↑l := span

{
xω

: ε → Zd

→0, |ε| ↔ l
}
.

Remark 1.1. Since the linear algebra definitions and assertions are valid for any
field; we can consider polynomials with coe!cients from an arbitrary field. On the
other hand, we prefer to use algebraically closed fields (a field C, for example) or we
must use algebraic extensions of the fields.

So, above and in the sequel, ‘span’ means the linear span over C; and by ! we
denote all polynomials of d variables with constant coe!cients from C.

The dot product of two vectors (d-tuples) x := (x1, . . . , xd), y := (y1, . . . , yd) is
x · y := x1y1 + · · ·+ xdyd. If all the polynomials from the space !l multiplied by an
exponential eix0·x, where x0 → Cd is a given point; then we shall write eix0·x!l (for
!↑l, eix0·x!↑l).

Let Dω imply a di"erential operator Dω1
1 · · ·Dωd

d
, where Dn, n = 1, . . . , d, is the

partial derivative with respect to the nth coordinate. Note that D(0,...,0) is the identity
operator. Abusing notations, for a function f = f(x) and constant point x0 we shall
write everywhere Dωf(x0), meaning, in fact, Dωf(x)|

x=x0
.

The multi-dimensional version of the Leibniz rule is

(fg)(ω) =
∑

ε↓Zd
→0

ε↑ω

(
ε

ϑ

)
f (ε)g(ω↔ε), ε → Zd

→0, (2)

where the functions f(x), g(x), x := (x1, . . . , xd), are su!ciently di"erentiable.
The Fourier transform F of a function f → L1

(
Rd

)
is defined by

f(x) ↘≃ f̂(ϖ) = (Ff) (ϖ) := (2ϱ)↔d/2

∫

Rd

f(x)e↔iϑ·x dx, ϖ → Rd.
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By S ↗ denote the space of tempered distributions; and note that the Fourier
transform can be extended to (compactly supported) distributions from S ↗ (Rd

)
.

Moreover, the domain of the Fourier transform can be extended (it is possible, in
particular, for compactly supported functions) to the whole complex space Cd. And
the Schwartz space S (of test functions), i. e., the space of functions that all the
derivatives of the functions are rapidly decreasing, also can be extended to Cd.

So, for x0 → Cd,ε → Zd

→0, we have the following formula
(
Feix0·xxω

)
(ϖ) = i|ω|Dωω(ϖ ↗ x0), ϖ → Cd.

Definition 1.1. Let f, g → L2
(
Cd

)
be complex functions. Then an inner product in

the space L2
(
Cd

)
is

⇐f |g⇒ :=
∫

Cd

f(x)g(x) dx. (3)

Here and in the sequel, the overline · denotes the complex conjugation.
In the following definition, we consider complex distributions and complex test

functions, see for example [10, 11].
Definition 1.2. Let ς → S(Cd

) be a complex test function. Let f = f(x), x →
Cd, be a locally integrable on Cd complex function. Then the function f induces a
distribution Tf (continuous linear functional) on S(Cd

) as follows

Tf (ς) :=

∫

Cd

f(x)ς(x) dx = ⇐f |ς⇒, (4)

where ⇐·|·⇒, in the right-hand side of (4), is the inner product defined by (3).
Any functional defined by (4) is a linear functional; in particular, the functional

is homogeneous:

Tf (aς) = aTf (ς),

where a is a complex valued function.
In the paper, we usually denote matrices by upper-case bold symbols and

(sometimes) enclose the symbols of matrices in the square brackets. On the other
hand, abusing notation slightly, we shall denote a vector of some linear space by a
plain lower-case symbol and interpret the vector as a column vector.

By In, n → N, denote the n⇑ n identity matrix.
Now recall some block matrix notions. A block matrix is a matrix broken into

sections called blocks or submatrices. A block diagonal matrix is a block matrix
such that the main diagonal submatrices can be non-zero and all the o"-diagonal
submatrices are zero matrices. The (block) diagonals can be specified by an index
k measured relative to the main diagonal, thus the main diagonal has k = 0 and
the k-diagonal consists of the entries on the kth diagonal above the main diagonal.
Note that the diagonal submatrices (excepting the main block diagonal) can be
non-square.
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1.2. Ordered sets By <lex we denote some lexicographical order and by Ak, k → Z→0,
denote the lexicographically ordered set of all multi-indices of length k

Ak :=
(
1ε, 2ε, . . . , d(k)ε

)
,

qε → Zd

→0, |qε| = k, q = 1, . . . , d(k),
qε <lex

q
↑
ε ⇓⇔ q < q↗,

where
d(k) :=

(
d+ k ↗ 1

k

)
=

(d+ k ↗ 1)!

k!(d↗ 1)!

is the number of k-combinations with repetition from the d elements.
By Ãk we denote a concatenated set of multi-indices

Ãk := (A0,A1, . . . ,Ak) ,

where the comma must be considered as a concatenation operator to join of two
sets. Actually the order of Ãk is the graded lexicographical order. By d̃(k) denote the
length of a concatenated set like Ãk

d̃(k) := d(0) + d(1) + · · ·+ d(k) =
(d+ k)!

k!d!
.

By Pk, k → Z→0, denote the lexicographically ordered set of all monomials of total
degree k

Pk(x) :=
(
x

1
ω, . . . , x

d(k)
ω

)
, x = (x1, . . . , xd) ,

(
1ε, . . . , d(k)ε

)
= Ak.

Remark 1.2. In examples (see Subsection 2.1 and Section 4), we shall use the
obvious order of variables: x > y > z (φ > ↼ > ↽, for the Fourier space variables).

By Dk denote the ordered set of di"erential operators

Dk :=

(
(↗i)kD

1
ω, . . . , (↗i)kD

d(k)
ω

)
,

(
1ε, . . . , d(k)ε

)
= Ak, (5)

and, for ϑ → Zd

→0, by Dε

k
denote the following set of operators

Dε

k
:=

(
(↗i)k↔|ε|

(
1ε

ϑ

)
D

1
ω↔ε, . . . , (↗i)k↔|ε|

(
d(k)ε

ϑ

)
D

d(k)
ω↔ε

)
,

(
1ε, . . . , d(k)ε

)
= Ak.

(6)

Remark 1.3. If sets (5), (6) are applied to some function f , then these applications
are distributive over comma: Dkf :=

(
(↗i)kD

1
ωf, . . . , (↗i)kD

d(k)
ωf

)
.

Note that if, for some q → {1, . . . , d(k)}, ϑ ↓↔ qε; then the qth entry of (6) is zero.
Moreover, if |ϑ| > k; then set (6) is zero set.

Note also that the zero entries of row-vector (6) can be interpreted as zeroizing.
By P̃k denote the following concatenated set of monomials

P̃k := (P0,P1, . . . ,Pk) . (7)
The concatenated set of derivatives is defined similarly to (7)

D̃k := (D0,D1, . . . ,Dk) . (8)
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2. The matrix of the linear system

2.1. Formation of the matrix. For some k, l → Z→0, k ↔ l, define a d̃(l)⇑d(k) matrix
Dk as follows

Dk :=





D0
k

D1
k

...
Dk

k

d̃(
l)
↗
d̃(
k
)





0

...
0





, (9)

where Dr

k
are d(r)⇑ d(k), r = 0, 1, . . . k, submatrices defined as

Dr

k
:=






D

1
ε

k




D

2
ε

k



...
D

d(r)
ε

k







,
(
1ϑ, . . . , d(r)ϑ

)
= Ar, (10)

and the row vectors

D

q
ε

k


, q = 1, . . . , d(r), are given by (6).

Remark 2.1. Note that if r > k; then the submatrix Dr

k
, defined by (10), is a zero

matrix.
Finally, for l → Z→0, define a d̃(l)⇑ d̃(l) matrix D̃l as

D̃l :=

D0 D1 . . . Dl↔1 Dl


=





D0
0 D0

1 . . . D0
l↔1 D0

l

0 D1
1 . . . D1

l↔1 D1
l

...
... . . . ...

...
0 0 . . . Dl↔1

l↔1 Dl↔1
l

0 0 . . . 0 Dl

l




. (11)

Remark 2.2. Note that, in formulas (9), (11), the symbol ‘0’ must be considered
as a zero submatrix of the corresponding size. (See Remarks 1.3.)

The component-wise form of the matrix D̃l, l → Z→0, is


D̃l



qr, 1↑q,r↑d̃(l)
=





(↗i)|

r
ω↔q

ε|
(

rε
qϑ

)
D

r
ω↔q

ε, qϑ ↔ rε ,

0, otherwise,
(12)

where
(
1ε, . . . , d̃(l)ε,

)
=

(
1ϑ, . . . , d̃(l)ϑ,

)
= Ãl.
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Example The bivariate d̃(3)⇑ d̃(3) = 10⇑ 10 matrix D̃3 is of the form:

D̃3

:=





I ↗i⇀x ↗i⇀y ↗⇀xx ↗⇀xy ↗⇀yy i⇀xxx i⇀xxy i⇀xyy i⇀yyy
0 I 0 ↗2i⇀x ↗i⇀y 0 ↗3⇀xx ↗2⇀xy ↗⇀yy 0

0 0 I 0 ↗i⇀x ↗2i⇀y 0 ↗⇀xx ↗2⇀xy ↗3⇀yy
0 0 0 I 0 0 ↗3i⇀x ↗i⇀y 0 0

0 0 0 0 I 0 0 ↗2i⇀x ↗2i⇀y 0

0 0 0 0 0 I 0 0 ↗i⇀x ↗3i⇀y
0 0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0 0 I





.

2.2. Some properties of the matrix D̃l

Theorem 2.1. Let l → Z→0. Let the set D̃l be given by (8), the matrix D̃l be given
by (11), and functions f, g be su!ciently di"erentiable. Then we have


D̃l(fg)


=


D̃lf


D̃lg =


D̃lg


D̃lf. (13)

Here we omit the proof of formula (13) and note only that the formula is a direct
consequence of form (12) and the Leibniz rule, see (2).

For a single function we investigate the ranks of submatrices in the upper right
corner of the matrix D̃lf(x0) (the matrices Dm

↑
m
f(x0), m↗

= 0, . . . ,m, m = 0, . . . , l,
that are given by (10)); where the function f : Cd ≃ Cd is su!ciently di"erentiable
and x0 → Cd is a given point.

Proposition 2.2. Let l → Z→0. The submatrix Dm
↑

m
, m↗

= 0, . . . ,m, m = 0, . . . , l,
contains the derivatives of order m↗m↗ only.

Corollary 2.3. All the submatrices on the mth, m = 0, . . . , l, block diagonal of
the matrix D̃l, i. e., the submatrices D0

m
,D1

m+1, . . . ,D
l↔m

l
, contain the derivatives of

order m.

It easy to see that the qth, 1 ↔ q ↔ d(m), row of the matrix Dm

m
, m = 0, . . . , l,

contains only one non-zero element I , which is situated on the qth position.
Consequently, Dm

m
= Id(m). So, since the matrix D̃lf(x0) is an upper triangular

matrix, we can state an obvious theorem.

Theorem 2.4. The matrix D̃lf(x0), l → Z→0, is singular i" f(x0) = 0.

Now state a theorem about ranks of all other blocks of the matrix D̃lf(x0).

Theorem 2.5. The d(m↗
) ⇑ d(m) submatrix Dm

↑
m
f(x0), m↗

= 0, . . . ,m ↗ 1, m =

1, . . . , l, l → N, has full rank, i. e., the rank of Dm
↑

m
f(x0) is equal to d(m↗

), if and
only if there exists at least one non-zero derivative Dϖf(x0), |⇁| = m↗m↗.
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The proof of Theorem 2.5 is given in A.
Hence we see that each of the submatrices Dm

↑
m
f(x0), m↗

= 0, . . . ,m, m = 0, . . . , l,
is either a full rank matrix or zero matrix.

The following theorem allows to determine the dimension of ker D̃lf(x0).
Theorem 2.6. Let l → Z→0, let f : Cd ≃ Cd be a function, and let x0 be a point
of Cd. Let the matrix D̃l be given by (11). Let Dωf(x0), ε → Zd

→0, be a non-zero
derivative of the least order. Then

dimker D̃lf(x0) =


d̃(l)↗ d̃(l ↗ |ε|) if l ↑ |ε| > 0;

d̃(l) if l < |ε|.
(14)

The theorem is a direct consequence of the following lemma.
Lemma 2.7. Under the conditions of Theorem 2.6, we have

rank D̃lf(x0) =


d̃(l ↗ |ε|) if l ↑ |ε| > 0;

0 if l < |ε|.

Sketch of the proof of Lemma 2.7. For the case l ↑ |ε| > 0, by Theorem 2.5 and
Corollary 2.3, each block on the |ε|th block diagonal of the matrix D̃lf(x0) is a
full rank matrix. However, since the blocks of D̃lf(x0) are not, generally, square
matrices; the problem to determine rank D̃lf(x0) is not trivial.

Using an analog of the Gaussian elimination algorithm (applied to columns instead
of rows) and moving (actually permutating) zero columns to the left, the matrix
D̃lf(x0) can always be transformed into a strictly upper triangular matrix, where
the lowest non-zero diagonal goes to the lower right corner of the last submatrix
Dl↔|ω|

l
. So rank D̃lf(x0) = d̃(l ↗ |ε|).

Since, in the case l < |ε|, the matrix D̃lf(x0) is a zero matrix; the case l < |ε| is
trivial. ↭

Introduce some notation.
Definition 2.1. Let l → Z→0, let a function f : Cd ≃ Cd be su!ciently di"erentiable,
and let x0 be a point of Cd. Let the matrix D̃l be given by (11). By Vl denote the
(right) null-space of the matrix D̃lf(x0):

Vl := ker D̃lf(x0). (15)

The space Cd̃(l), l → Z→0, can be considered as a space with a Cartesian coordinate
system, where the dot product of the Cartesian coordinates is x · y :=


q
xqyq.

Namely, we have
Cd̃(l)

:= span


eq : 1 ↔ q ↔ d̃(l)


,

where the span is over C and eq is the qth basis vector: eq :=
(
ωq1, . . . , ωq,d̃(l)

)
; and

we can decompose Cd̃(l) as follows

Cd̃(l)
=

0Cd̃(l) ↖ 1Cd̃(l) ↖ · · ·↖ lCd̃(l), (16)
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where
0Cd̃(l)

:= span {e1} ,
mCd̃(l)

:= span


eq : d̃(m↗ 1) + 1 ↔ q ↔ d̃(m)


, m = 1, . . . , l,

and the direct sums in (16) are orthogonal. Decomposition (16) corresponds to the
block structure of the matrix D̃l, l → Z→0, (as well as structures of P̃l, D̃l).
Definition 2.2. By Pm denote the orthogonal projection of Cd̃(l) onto mCd̃(l), m =

0, . . . , l; and define the subspaces of the null-space Vl, see Definition 2.1, as
mVl := PmVl, m = 0, 1, . . . , l. (17)

Note that generally Vl is not a sum, like (16), of mVl. In Subsection 3.1, we shall
return to this problem in respect to the a!ne invariance of polynomial spaces.

Now we can formulate the following theorem.

Theorem 2.8. Let l → N. Let the matrix D̃lf(x0) be singular and the space Vl is
defined by (15). Then the subspace lVl := PlVl is non-zero.

Proof of Theorem 2.8. If the matrix D̃lf(x0) is a zero matrix, there is nothing to
prove.

Now let D̃lf(x0) be non-zero. Suppose lVl is a zero space; then

dimker D̃lf(x0) = dimker D̃l↔1f(x0). (18)

Since the matrix D̃lf(x0) is singular and non-zero; there exists a number r → N,
1 ↔ r ↔ l, that the block r-diagonal is the lowest non-zero block diagonal. By
Theorem 2.6, we have

dimker D̃l↔1f(x0) =


d̃(l ↗ 1)↗ d̃(l ↗ 1↗ r) if r ↔ l ↗ 1;

d̃(l ↗ 1) if r > l ↗ 1

,

dimker D̃lf(x0) = d̃(l)↗ d̃(l ↗ r).

Nevertheless, for all r, l → N, r ↔ l, we get


d̃(l ↗ 1)↗ d̃(l ↗ 1↗ r) if r ↔ l ↗ 1;

d̃(l ↗ 1) if r > l ↗ 1


< d̃(l)↗ d̃(l ↗ r).

This contradicts equality (18). The theorem is proved. ↭

If we have several functions f1, f2, . . . , fn, we must consider a block matrix

D̃lf(x0) :=




D̃lf1(x0)

...
D̃lfn(x0)



 , (19)
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where by f we denote the following column vector





f1
f2
...
fn



.

Definition 2.3. Let l → Z→0. Similarly to Definition 2.1, by Vl denote the null-space
of block matrix (19).

3. Solution method

3.1. One homogeneous PDE

Theorem 3.1. Let P → !, let l → Z→0, let x0 be a point of Cd. Let the matrix D̃l

be given by (11), let the space Vl be given by (15), and let the row-vector

P̃l


be

given by (7). Then the following function eix0·x

P̃l(x)


v, v → Cd̃(l), is non-zero and

belongs to kerP (↗iD) if and only if P (x0) = 0 and v → Vl.

Proof of Theorem 3.1. As it has been said, see Theorem 2.4, a necessary and
su!cient condition for the matrix D̃lP (x0) to be singular is that the point x0 be a
root of the polynomial P .

For some v → Cd̃(l), consider a function

G(x) := P (↗iD)

(
eix0·x


P̃l(x)


v
)
.

Taking the Fourier transform of the previous function, we obtain

Ĝ(ϖ) := P (ϖ)

D̃lω(ϖ ↗ x0)


v, ϖ → Cd. (20)

The adjoint operator (set of operators) D̃ ↘
l

satisfies a property

D̃ ↘
l
= D̃l (21)

(the adjunction, like the complex conjugation, is distributive over the comma,
see Remark 1.3).

By Definition 1.2, Theorem 2.1, and property (21); for any test function ς →
S(Cd

), the functional T
Ĝ
(ς) (where Ĝ is distribution (20)) is of the form

T
Ĝ
(ς) =


P (·)


D̃lω(·↗ x0)


v
ς

=


ω(·↗ x0)



D̃l

(
Pς

)
v


=


D̃l

(
P (x0)ς(x0)

)
v

by (13)
=


D̃lς(x0)

 
D̃lP (x0)


v. (22)

Using the expression in the right-hand side of (22), the proof of the theorem is
trivial. ↭
Remark 3.1. Theorem 3.1 can be proved for other (linear and linear-conjugate, see
for example [11]) functionals like (4).

Below present a corollary of the previous theorem.
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Corollary 3.2. Under the conditions of Theorem 3.1, we see that the following
spaces are equivalent:

eix0·x!↑l ↙ kerP (↗iD);

eix0·x


P̃l(x)

v : v → Vl


.

Now we state a theorem that is the direct consequence of Theorem 2.6.

Theorem 3.3. Let l → Z→0. Let P → !, let x0 be a root of P . Let DωP (x0), ε → Zd

→0,
be a non-zero derivative of the least order. Then we have

dim
(
eix0·x!↑l ↙ kerP (↗iD)

)
=


d̃(l)↗ d̃(l ↗ |ε|) if l ↑ |ε| > 0;

d̃(l) if l < |ε|.

Moreover, if l < |ε|; then

eix0·x!↑l ↙ kerP (↗iD) = eix0·x!↑l.

Below we state a corollary of Theorem 2.8.

Corollary 3.4. Under the conditions of Theorem 3.1, we see that if x0 is a root of
the polynomial P , then the null-space of the operator P (↗iD) contains polynomials
(multiplied by the exponential eix0·x) up to an arbitrary large total degree.

Remark 3.2. Corollary 3.4 generalizes a fundamental property, see [1], of
polynomial solutions to a single PDE with constant coe!cients.

3.2. System of homogeneous PDE’s

For a system of PDE’s





P1(↗iD)· = 0,

...
Pn(↗iD)· = 0,

(23)

where P1, P2, . . . , Pn are algebraic polynomials; we have the following theorem.

Theorem 3.5. Let Pm → !, m = 1, 2, . . . , n; let x0 → Cd be a solution to the
following system of algebraic equations






P1(x) = 0,

...
Pn(x) = 0.

(24)
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Let l → Z→0 and the matrix D̃l be given by (11). The expression eix0·x

P̃l


v, where

v → Cd̃(l), is a non-zero solution to system (23) i" the vector v belongs to the null-
space of block matrix

D̃lP (x0) :=




D̃lP1(x0)

...
D̃lPn(x0)



 , (25)

where P is the column vector P :=

P1 P2 · · · Pn

T .

Definition 3.1. Under the conditions of Theorem 3.5, we can define the following
polynomial space

Vl :=


P̃l


v : v → ker D̃lP (x0)


, (26)

where D̃lP (x0) is block matrix (25).
Below we state an almost obvious theorem about non-zero solutions to system of

PDE’s (23).

Theorem 3.6. Let Pm → !, m = 1, 2, . . . , n. Let x0 → Cd, l → Z→0, and the matrix
D̃lP (x0), P :=


P1 P2 · · · Pn

T , be given by (25). Let DωmPm(x0), εm → Zd

→0,
m = 1, . . . , n, be the non-zero derivatives of the least orders. Let lth column (block)
vector be in the form 



Dl↔|ω1|
l

P1(x0)

Dl↔|ω2|
l

P2(x0)

. . .

Dl↔|ωn|
l

Pn(x0)




, (27)

where the submatrices Dl↔|ωm|
l

, m = 1, 2, . . . , n, are defined by (10). (If, for some
m → {1, . . . , n}, l ↗ |εm| < 0; then the corresponding submatrix Dl↔|ωm|

l
Pm(x0) is a

zero matrix, see Remark 2.1.) Suppose the polynomial space Vl corresponds to block
matrix (25), see Definition 3.1. Then Vl ↙ !l ↓= ∝ i" matrix (27) is not a full-rank
matrix.

Now we can state several corollaries of Theorem 3.6.

Corollary 3.7. Suppose that, for some l → N, matrix (27) is not full-rank; then,
for all l↗ → Z→0, 0 ↔ l↗ < l, we have Vl↑ ↙!l↑ ↓= ∝, where Vl↑ := ker D̃l↑P (x0), and D̃l↑

is an analog of matrix (25).

Corollary 3.8. If l < min{|ε1|, . . . , |εn|}, then Vl = !↑l.

Corollary 3.9. For the block matrix




D0
0P1(x0)

D0
0P2(x0)

. . .
D0

0Pn(x0)
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to be no full-rank matrix it is necessary and su!cient to have
P1(x0) = · · · = Pn(x0) = 0. (28)

Remark 3.3. Thus system (23) has a nonzero polynomial (multiplied by eix0·x)
solution i" conditions (28) are valid.

Theorem 3.10. Under the conditions of Theorem 3.5, we have
Vl↔1 = !↑l↔1 ↙ Vl, (29)

where the polynomial spaces Vl↔1,Vl, l → N, are defined by (26).

The proof of Theorem 3.10 is given in B.
Finally we state three remarks.

Remark 3.4.
(1) Theorem 3.10 is valid also for single PDE.
(2) Certainly, inclusion (29) of polynomial spaces reflects a fundamental property

of di"erentiation to commutate with translation.
(3) Note also that if Vl ′ !↑l↔1 (it is possible only for a system of two and more

PDE’s), then Vl↔1 = Vl.

3.3. PDE with a polynomial right-hand side

In the previous subsections, PDE’s have zero right-hand sides. Nevertheless
the matrix approach allows generalizing PDE to polynomial (multiplied by an
exponential) right-hand side.

Theorem 3.11. Let polynomials P, F → !, x0 → Cd be a root of P , ε → Zd

→0 be
a multi-index that defines the least order derivative such that DωP (x0) ↓= 0. Let
the polynomial F be defined as follows: F (x) :=


P̃degF (x)


w, w → Cd̃(degF ). Let

l → Z→0, l ↑ degF + |ε|, and the matrix D̃l be given by (11). Let v → Cd̃(l) be a
column vector and p :=


P̃l


v be the corresponding polynomial. Then the polynomial

p is a solution to PDE
P (↗iD)

(
eix0·x·

)
= eix0·xF (x) (30)

i" the vector v is a solution to linear algebraic equation


D̃lP (x0)


v =





w

d̃(
l)
↗
d̃(
d
eg

F
)





0

0

...
0




. (31)

Remark 3.5. Under the conditions of Theorem 3.11, we can state three remarks:
(1) dim {p → !↑l : P (↗iD) (eix0·xp(x)) = eix0·xF (x)} = d̃(l)↗ d̃(l ↗ |ε|);
(2) for any root x0 → Cd of P , number l → Z→0, and polynomial F → ! such that

degF ↔ l ↗ |ε|; algebraic system (31) is consistent;
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(3) for any root x0 → Cd of P and any polynomial F → !, there exists a
polynomial p → !‘ of an arbitrary large degree that p satisfies PDE (30).

Corollary 3.12. Under the conditions of the previous theorem, and supposing
P (x0) ↓= 0; we see that algebraic system (31) is consistent and has one solution,
i. e., polynomial solution to PDE (30) is defined uniquely and does not depend on
the choice of l.

The proof of the previous results is left to the reader. Note only that the theorem
and remarks are based on Theorem 2.6, Theorem 3.1, and the classical Rouché-
Capelli theorem.

3.4. A!ne invariance

In this short subsection, we concern a!ne invariance of polynomial solutions to
PDE’s, in particular, from the matrix point of view.

Recall that a (polynomial) space V ∞ ! is a!nely invariant, i. e., shift- and scale-
invariant; if, for all p → V , p(ax + b) → V for a → C, b → Cd. Also recall that a
polynomial space V is scale-invariant i" V stratifies:

V =

⊕

k↓Z→0

V ↙ !k. (32)

Stratified form (32) of the polynomial space Vl, l → N, implies the following
conditions on the null-space Vl (see Definitions 3.1 and 3.2)

Vl =

l⊕

k=0

PkVl =

l⊕

k=0

Vl ↙ kCd̃(l),

cf. (16), and vice verse. Note, for a!ne invariance case, we have

PkVl = Vl ↙ kCd̃(l).

Thus the column matrix [Vl] of basis vectors can be presented in a block diagonal
form.

The matrix D̃lP (x0), see (19), for the a!ne invariance of a polynomial space, will
be the object of another paper.

4. Examples. From the practical point of view, define a system of algebraic
polynomials that induces PDE’s, fixing some number l → Z→0 and a point
x0 → Ccd̃(l), define the null-space (using some computer symbolic algebra system)
ker D̃lP (x0) as a matrix [Vl] of column basis vectors; then eix0·x


P̃l(x)


[Vl] is the

row-vector of polynomials (multiplied by the exponential eix0·x)) that this vector
constitutes a basis of space [Vl], see (26).

4.1. Homogeneous equations

First we consider three examples, presented in the paper [4], of polynomial solution
to PDE’s.
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Example 1. The first example is 2D Laplace operator

L1 :=
⇀2

⇀x2
+

⇀2

⇀y2
, x, y → R. (33)

So the polynomial that induces the operator is

P1(φ, ↼) := ↗φ2 ↗ ↼2, φ, ↼ → C. (34)

The 10⇑ 10 matrix D̃3P1(0, 0) is of the form

D̃3P1(0, 0) :=





0 0 0 2 0 2 0 0 0 0

0 0 0 0 0 0 6 0 2 0

0 0 0 0 0 0 0 2 0 6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





. (35)

Now, selecting the appropriate set of basis vectors


ker D̃3P1(0, 0)


:=





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 ↗1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 ↗1 0

0 0 0 0 0 0 ↗3

0 0 0 0 0 3 0

0 0 0 0 0 0 1





,

we obtain the well-known row-vector of basis polynomials

P̃3(x, y)

 
ker D̃3P1(0, 0)


=


1 x y xy y2 ↗ x2

3xy2 ↗ x3 y3 ↗ 3x2y

. (36)

Example 2. The polynomial P2(φ, ↼) := ↗φ2 ↗ i↼ that induces the operator of this
example

L2 :=
⇀2

⇀x2
↗ ⇀

⇀y
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is not homogeneous. The matrix D̃3P2(0, 0) is of the form

D̃3P2(0, 0) :=





0 0 ↗1 2 0 0 0 0 0 0

0 0 0 0 ↗1 0 6 0 0 0

0 0 0 0 0 ↗2 0 2 0 0

0 0 0 0 0 0 0 ↗1 0 0

0 0 0 0 0 0 0 0 ↗2 0

0 0 0 0 0 0 0 0 0 ↗3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





and, using some matrix

ker D̃3P2(0, 0)


, a basis of kerL2(↗iD)↙!↑3 can be in the

form
{
1, x, x2

+ 2y, x3
+ 6xy

}
.

Example 3. The third example taken from the paper [4] is interesting from two
points of view. Namely we have a system of two operators: an elliptic (the Laplace
operator)

L3 :=
⇀2

⇀x2
+

⇀2

⇀y2
+

⇀2

⇀z2

and hyperbolic

L4 :=
⇀

⇀x

⇀

⇀y
+

⇀

⇀x

⇀

⇀z
+

⇀

⇀y

⇀

⇀z
.

And it is a 3D example.
Since, in [4], the third degree polynomials are considered only; therefore, we use

the last (block) columns of matrices D̃3P3(0, 0), D̃3P4(0, 0) (it is possible only in an
a!ne-invariant case), where P3, P4 are the algebraic polynomials that corresponds
to the operators L3, L4, respectively.

[
D3P3(0, 0)
D3P4(0, 0)

]
=





D0
3P3(0, 0)

...
D3

3P3(0, 0)

D0
3P4(0, 0)

...
D3

3P4(0, 0)





.

Since other blocks of the previous matrix are zero, we have
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ker

[
D3P3(0, 0)
D3P4(0, 0)

]
= ker





6 0 2 0 0 0 0 2 0 0

0 2 0 6 0 0 0 0 2 0

0 0 0 0 2 0 2 0 0 6

0 2 0 0 2 1 0 0 0 0

0 0 2 0 0 1 2 0 0 0

0 0 0 0 0 1 0 2 2 0




.

Using a column-matrix
[
ker

[
D3P3(0, 0)
D3P4(0, 0)

]]
, we get a basis of the space kerL3 ↙

kerL4 ↙ !3:{
3x2y ↗ 3x2z ↗ y3 + z3,↗x3

+ 3x2y + 3xy2 ↗ 6xyz ↗ 2y3 + 3yz2 ,

↗ 2x3
+ 3x2y + 3xy2 ↗ 6xyz + 3xz2 ↗ y3,

x3
+ 3x2y ↗ 3x2z ↗ 3xy2 ↗ y3 + 3y2z

}
.

Note that, in the paper [4], another basis is presented. (It depends on basis vectors
of the null-space.) But it is not hard to see that our own and Pedersen’s, see [4],
basis are bases of the same space.

Secondly we present an example, where another (not the origin) root of polynomial
is used.
Example 4. This example is taken from the paper [9]. Since the symbol P1(φ, ↼),
φ, ↼ → Ĉ, of 2D Laplace operator (33) vanishes on a 2D manifold; we can take
another root of P1 than the origin. Here we take, as an example, a root (1, i); and
we obtain the following matrix

D̃3P1(1, i) :=





0 ↗2i 2 ↗2 0 ↗2 0 0 0 0

0 0 0 ↗4i 2 0 ↗6 0 ↗2 0

0 0 0 0 ↗2i 4 0 ↗2 0 ↗6

0 0 0 0 0 0 ↗6i 2 0 0

0 0 0 0 0 0 0 ↗4i 4 0

0 0 0 0 0 0 0 0 ↗2i 6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





.

So a subspace of Laplace’s operator null-space is of the form
eix↔y

!↑3 ↙ kerL1

= eix↔y
span

{
1, x+ iy, x2

+ 2ixy ↗ y2, x3
+ 3ix2y ↗ 3xy2 ↗ iy3

}
. (37)

Note that the real or imaginary parts of the polynomials in (37) (cf. (36) and (37))
multiplied by an exponential, do not become the solutions to the Laplace operator.

Finally we consider an operator that the operator symbol does not vanish at the
origin, thus any pure polynomial must be multiplied by an exponential to be solution
to PDE.
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Example 5. Consider the Helmholtz operator

L5 :=
⇀2

⇀x2
+

⇀2

⇀y2
↗ I .

The corresponding symbol is

P5(φ, ↼) := ↗φ2 ↗ ↼2 ↗ 1, φ, ↼ → C. (38)

P5 vanishes, in particular, at a point (i, 0); and we consider the following matrix

D̃3P5(i, 0) :=





0 ↗2 0 2 0 2 0 0 0 0

0 0 0 ↗4 0 0 6 0 2 0

0 0 0 0 ↗2 0 0 2 0 6

0 0 0 0 0 0 ↗6 0 0 0

0 0 0 0 0 0 0 ↗4 0 0

0 0 0 0 0 0 0 0 ↗2 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





.

And we have

e↔x
!↑3 ↙ kerL5 = e↔x

span
{
1, y, x+ y2, 3xy + y3

}
.

4.2. PDE with polynomial right-hand side

Finally we discuss PDE’s with polynomial (multiplied, in general, by an
exponential) right-hand sides.
Example 6. Here we present the Poisson equation in the form

L1

(
eix↔y·

)
= eix↔y

(
↗2xy + 3x+ y2 + 2

)
, (39)

where L1 is 2D Laplace’s operator (33) and the point (1, i), which defines the
exponential eix↔y, is a root of the corresponding symbol P1, see (34). The polynomial
in the right-hand side of PDE (39) can be presented as

F (x, y) := ↗2xy + 3x+ y2 + 2 =


P̃2(x, y)


w, where

w :=

2 3 0 0 ↗2 1

T
.

Since degF = 2 and |ε| = 1, where ε → Zd

→0 is minimal degree such that
DωP1(1, i) ↓= 0; we shall use l = 3.
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The corresponding linear algebraic equation (31) is:




0 2i ↗2 2 0 2 0 0 0 0

0 0 0 4i ↗2 0 6 0 2 0

0 0 0 0 2i ↗4 0 2 0 6

0 0 0 0 0 0 6i ↗2 0 0

0 0 0 0 0 0 0 4i ↗4 0

0 0 0 0 0 0 0 0 2i ↗6

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





v =





2

3

0

0

↗2

1

0

0

0

0





, where v → C10. (40)

By Item (1) of Remark 3.5, the dimension of polynomial space to solve PDE (39)
(and dimension on linear space to solve (40)) is d̃(3)↗ d̃(2) = d(3) = 4. Since linear
algebraic system (40) is undetermined and consistent; using the standard technics,
we define the solution to (40) (column-vector v) and obtain a polynomial solution
to PDE (39)

(
1

6
+

i

6

)
(↗1 + (3 + 3i)v4)x

3
+ v3

(
↗x2 ↗ 2ixy + y2

)

+

(
↗3v4 +

(
1

2
↗ i

2

))
x2y ↗ 1

2
i(6v4 ↗ 1)xy2 + v2(x+ iy) + v4y

3
+ v1

+

(
1

4
+

i

4

)
x2

+

(
1

2
+

i

2

)
xy +

(
5

4
+

i

4

)
y, v1, v2, v3, v4 → C.

Example 7. In this example, we consider Poisson’s equation. However we use a point
(1, 1) that is not root of P1. We solve the following PDE:

L1

(
eix+iy·

)
= eix+iy

(3 + x↗ 2y), (41)
where L1 is Laplace operator (33). The value l = 1 will su!ce and the linear system
is very simple 


↗2 2i 2i
0 ↗2 0

0 0 ↗2



 v =




3

1

↗2





and the unique polynomial solution to PDE (39) is of the form

↗x

2
+ y ↗

(
3

2
↗ i

2

)
.

Conclusion. In this paper, a matrix method has been developed for the
constructive determination of polynomial solutions of linear PDEs with constant
coe!cients. Here we will present some plans for the near future. It is of particular
interest to generalize the method to the following cases:

• matrix methods of polynomial solutions to PDE(’s) with polynomial
coe!cients;
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• matrix methods of investigation of polynomial solutions to systems of
constant coe!cient PDE’s;

• matrix methods of investigation of a!ne invariance/no invariance of
polynomial solution spaces to constant coe!cient PDE(’s).

A. Proof of Theorem 2.5 First consider the matrix D0
m
f(x0), m = 1, . . . , l.

We see that D0
m
f(x0) is a row vector


(↗i)mD

q
ωf(x0)


(1 ↔ q ↔ d(m)). Consequently

the matrix D0
m
f(x0) has non-zero rank i" there exists at least one multi-index qε →

Am such that Dq
ωf(x0) ↓= 0.

Secondly consider the matrices Dm
↑

m
f(x0), m↗

= 1, . . . ,m ↗ 1, m = 1, . . . , l. Note
that Dm

↑
m
f(x0) is a d(m↗

) ⇑ d(m) matrix. By qr⇁, 1 ↔ q ↔ d(m↗
), 1 ↔ r ↔ d(m),

denote the di"erence qε↗ rϑ, where
(
1ε, . . . , d(m)ε

)
= Am and

(
1ϑ, . . . , d(m

↑)ϑ
)
= Am↑ .

Define auxiliary d(m↗
) ⇑ d(m) matrices Gm

↑
m

, m↗
= 1, . . . ,m ↗ 1, m = 1, . . . , l, as

follows 
Gm

↑
m


qr, 1↑q↑d(m↑), 1↑r↑d(m)

=
qr⇁. (42)

We suppose that some entries of the matrix Gm
↑

m
do not belong to Zd

→0, i. e., a tuple
qr⇁ can contain negative components.

Lemma A.1. Any multi-index ⇁ → Am↔m↑ appears once in each row and no more
than once in each column of the matrix Gm

↑
m

. However not every column of Gm
↑

m

contains the multi-index ⇁.

Proof of Lemma A.1. For any multi-index ⇁ → Am↔m↑ and any row q, q =

1, . . . , d(m↗
), of the matrix Gm

↑
m

, we can always define a d-tuple ε → Zd as ε := ⇁+qϑ,
where qϑ → Am↑ . Since qϑ, ⇁ → Zd

→0 and |qϑ| = m↗, |⇁| = m↗m↗; therefore, ε → Zd

→0,
|ε| = m. Consequently there exists a unique (column) number r → {1, . . . , d(m)}
such that ε =

rε → Am.
Fix a column number r → {1, . . . , d(m)}. Consider some ⇁ → Am↔m↑ and define a

d-tuple ϑ as ϑ :=
rε ↗ ⇁, where rε → Am. If ⇁ ↔ rε, then ϑ =

qϑ → Am for a unique
(row) number q → {1, . . . , d(m↗

)}; else the column r does not contain the multi-index
⇁. ↭
Lemma A.2. Let

(
1ϑ, . . . , d(m

↑)ϑ
)
= Am↑,

(
1⇁, . . . , d(m↔m

↑)⇁
)
= Am↔m↑, m > m↗.

Consider an entry qr⇁ of the matrix Gm
↑

m
and suppose that qr⇁ is equal to a multi-

index j⇁ → Am↔m↑, j → {1, . . . , d(m↗m↗
)}; then any entry of the rth column of Gm

↑
m

below than qr⇁, i. e., the entry q
↑
r⇁, q↗ → {q + 1, . . . , d(m↗

)}, belongs either to the set
of the multi-indices {1⇁, . . . , j↔1⇁} or does not belong to Zd

→0.

Proof of Lemma A.2. Since the multi-indices qϑ, q = 1, . . . , d(m↗
), are

lexicographically ordered, i. e., 1ϑ <lex
2ϑ <lex · · · <lex

d(m↑)ϑ; using (42), we obtain
the order

1r⇁ >lex
2r⇁ >lex · · · >lex

d(m↑),r⇁. (43)
Consider any q

↑
r⇁, q↗ → {q+1, . . . , d(m↗

)}, assume q
↑
r⇁ /→ {1⇁, . . . , j↔1⇁} and q

↑
r⇁ → Zd

→0.
Then there exists a unique number j↗ → {j, . . . , d(m↗m)} such that j

↑
⇁ =

q
↑
r⇁. Since
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j↗ ↑ j, we have j
↑
⇁ =

q
↑
r⇁ ↑lex

j⇁ =
qr⇁. By (43), we get q↗ ↔ q. This contradiction

concludes the proof. ↭

Finally let us prove the theorem.

Proof of Theorem 2.5. Obviously that at least one non-zero derivative Dϖf(x0),
|⇁| = m↗m↗, is necessary for full rank of the matrix Dm

↑
m
f(x0).

Su!ciency. For some j⇁ → Am↔m↑ , j → {1, . . . , d(m ↗ m↗
)}, suppose that the

derivative Dj
ϖf(x0) ↓= 0. By Lemma A.1, from Dm

↑
m
f(x0), we can take a d(m↗

)⇑d(m↗
)

submatrix with the non-zero main diagonal
(
D

j
ϖf(x0), . . . , D

j
ϖf(x0)

)
and we denote

this submatrix by Sj.
Suppose, for 1⇁ → Am↔m↑ , D1

ϖf(x0) ↓= 0; then, by Lemma A.2 and property (1),
all the entries below the main diagonal of the submatrix S1 vanish. So the matrix
S1 is not singular, consequently rankDm

↑
m
f(x0) = d(m↗

).
Otherwise, D1

ϖf(x0) = 0. Suppose there exists a multi-index j⇁ → Am↔m↑ , j →
{2, . . . , d(m ↗m↗

)}, such that D
j
ϖf(x0) ↓= 0 and all the derivatives D

j↑
ϖf(x0), j↗ =

1, . . . , j ↗ 1, vanish. Since all the entries below the main diagonal of the matrix Sj

vanish, it follows that detSj ↓= 0. This concludes the proof of the su!ciency. ↭

B. Proof of Theorem 3.10 We must restructure the matrices Dkf(x0)

(see (9)), where f :=





f1
f2
...
fn



, k = 0, . . . l; and introduce a notation.

Let k, l → Z→0, k ↔ l. Define the nd̃(l)⇑ d(k) matrix D̆kf(x0), as follows

D̆kf(x0) :=





D̆0
k
f(x0)

D̆1
k
f(x0)

...
D̆k

k
f(x0)

0

...
0





, where D̆r

k
f(x0) :=





Dr

k
f1(x0)

Dr

k
f2(x0)

...
Dr

k
fn(x0)




(44)

and Dr

k
, r = 0, . . . k, k = 0, . . . l, is given by (10).
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And formulate an analog of matrix (19) (see also (11))

˜̆Dlf(x0) :=

D̆0f(x0) D̆1f(x0) . . . D̆lf(x0)



=





D̆0
0f(x0) D̆0

1f(x0) . . . D̆0
l↔1f(x0) D̆0

l
f(x0)

0 D̆1
1f(x0) . . . D̆1

l↔1f(x0) D̆1
l
f(x0)

...
... . . . ...

...
0 0 . . . D̆l↔1

l↔1f(x0) D̆l↔1
l

f(x0)

0 0 . . . 0 D̆l

l
f(x0)




. (45)

Remark A.1. Obviously, the matrices D̃lf(x0),
˜̆Dlf(x0) have the same null-space.

Proof of Theorem 3.10. Suppose a polynomial p → Vl↔1. Then there exists a vector
v → ker

˜̆Dl↔1f(x0) such that p =


P̃l↔1


v. Obviously,

p → !↑l↔1. (46)

Matrix (45) can be presented as a block matrix

˜̆DlP (x0) :=





D̆0
l
P (x0)

˜̆Dl↔1P (x0)
...
D̆l↔1

l
P (x0)

0 . . . 0 D̆l

l
P (x0)




, (47)

where the submatrices D̆0
l
, . . . , D̆l

l
are given by (44). Introduce an auxiliary column

vector as follows

vϱ :=





v

d(
l)






0

...
0



 (48)

Then, using block form (47) of matrix ˜̆DlP (x0), we get vϱ → ker D̃lP (x0). Since
p =


P̃l


vϱ, it follows that p → Vl; and, by (46), we obtain p → !↑l↔1 ↙ Vl. Thus we

have Vl↔1 ′ !↑l↔1 ↙ Vl.
Contrary. Suppose a polynomial p → !↑l↔1 ↙ Vl. Since p → !↑l↔1, it follows that

the polynomial can be presented as follows p =


P̃l


vϱ, where vϱ is given by (48).

Since vϱ → ker D̃lP (x0) and, arguing as above; v → ker D̃l↔1P (x0). Thus p → Vl↔1;
i. e., we have Vl↔1 ∈ !↑l↔1 ↙ Vl.

This concludes the proof. ↭
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