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Аннотация. Целью работы является математическое моделирование пластического течения,
возникающего в процессе внедрения клина в выпуклую заготовку. В ходе решения постав-
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деформированной поверхности материала в каждый момент времени; соотношение, позволя-
ющее определить необходимую для внедрения клина нагрузку; выражения для расчёта де-
формаций, получаемых частицами материала на линии разрыва скоростей перемещений и в
центре веера линий скольжения. Получено численное решение частного случая задачи о внед-
рении клина в гиперболический цилиндр, для которого: построены графики изменения угла
раскрытия веера характеристик и необходимой для внедрения клина нагрузки, пластическая
область и деформированная поверхность; рассчитаны деформации, получаемые частицами
материала в окрестностях особенностей поля линий скольжения.
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Abstract. The aim of the work is the mathematical modelling of the plastic flow generated during
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following equations were derived: a system of equations for the construction of the plastic region
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Введение. Теория пластического течения является одним из фундамен-
тальных направлений механики деформируемого твёрдого тела. Основные по-
ложения теории [1, 2] позволяют описывать поведение материалов при различ-
ных напряжённых состояниях в условиях пластического деформирования с учё-
том изменения геометрии деформируемого тела. В качестве меры деформаций
при этом возможно использование тензоров конечных деформаций.

Решение задачи о внедрении симметричного твёрдого недеформируемого
клина в жесткопластическое полупространство при условиях текучести Треска
– Сен–Венана и Мизеса приводится в работах Хилла, Ли и Таппера [3]. Ими бы-
ли исследованы положение смещённой поверхности, траектории частиц среды в
пластической области (частицы движутся по направлению к внедрйнной части
клина), искажение первоначально квадратной сетки. Данное решение является
автомодельным с точки зрения сохранения геометрического подобия пластиче-
ской области относительно глубины внедрения клина.

Обобщение решения Хилла для задачи о вдавливании клина в выпуклое тело
симметричной формы рассматривалось в работах Г. И. Быковцева, Д. Д. Ивле-
ва, А. И. Хромова [4, 5]. Исследование полей деформаций на поверхностях раз-
рыва скоростей перемещений и в центре веера характеристик в условиях плос-
кой деформации в задаче о вдавливании клина в полупространство при условии
текучести Кулона-Мора проводилось в работе [6]. В работе [7] в рамках моде-
ли идеального жесткопластического тела с учётом необратимой сжимаемости
материала исследовались поля деформаций в окрестности особенностей поля
скоростей перемещений в задаче о выглаживании поверхности клинообразным
штампом.

В представляемой работе рассматривается аналитический вывод соотноше-
ний для построения пластической области и деформированной поверхности ма-
териала, расчёта деформаций, получаемых частицами в окрестностях особенно-
стей поля скоростей; численное решение задачи для заготовки, форма которой
задаётся уравнением гиперболического цилиндра.

1. Вывод соотношений. Клин с углом раствора 2θ внедряется в выпук-
лую заготовку криволинейной формы. В результате внедрения часть материала
выдавливается, и форма заготовки изменяется. Поле линий скольжения состо-
ит из трёх областей (рис. 1). Две из них – ABD и AEC – имеют треугольную
форму, оба семейства линий скольжения в них прямолинейны; третья область
– ADE – представляет собой центрированный веер.

Скорость внедрения клина Vy постоянна и полагается равной -1, так как ось
y направлена вверх. Коэффициент трения µ постоянен вдоль поверхности кон-
такта клина с заготовкой, его значение связано с углом η зависимостью

µ =
cos(2η)

1 + sin(2η)
.
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Решение задачи состоит в определении в каждый момент времени t: формы
деформированной границы материала AFC, координат точек A и C, угла рас-
крытия веера ψ(t). Известные значения перечисленных параметров позволяют
найти необходимую для внедрения клина нагрузку.

Рис. 1. Поле линий скольжения при вдавливании клина с углом раствора 2θ в вы-
пуклую заготовку

В каждый момент времени поле скоростей определяется проекциями скоро-
сти Vy на α- и β- линии, которые равны:

Vα = −Vy
sin(θ)

cos(η)
, Vβ = 0

.
Из полученного поля скоростей следует, что движение материала в области

BAFC происходит по направлению α- линий, при этом области ABD и AECF
движутся как жёсткое целое, а угол раствора веера, в силу выпуклости заго-
товки, монотонно уменьшается. Из этого следует, что весь процесс деформиро-
вания можно разбить на два этапа: первый происходит при ψ > 0, деформи-
рованная поверхность в процессе пластического течения образуется в точке C,
а в точке A она подминается клином; второй начинается в момент времени t∗

при обращении угла ψ в нуль, деформированная поверхность также образуется
в точке C, но в точке A она уже не подминается клином и, соответственно, не
оказывает влияния на пластическое течение.

На первом этапе материал в области AECF движется как жёсткое целое,
проекции скорости точек области на оси координат x и y равны:

vx = vαcos(η − θ + ψ), vy = vαsin(η − θ + ψ) (1)
Интегрирование соотношений (1) даёт уравнения свободной границы дефор-

мированной поверхности AFC в виде:
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x (t, τ) = vα

∫ t

τ

cos (η − θ + ψ) dt + x0 (τ) ,

y (t, τ) = vα

∫ t

τ

sin (η − θ + ψ) dt + y0 (τ) .

(2)

Здесь x = x0(τ), y = y0(τ) – параметрическое представление границы тела
до деформации; x = x(t, τ), y = y(t, τ) – параметрические уравнения дефор-
мированной части свободной поверхности AFC в момент времени t. Параметр
τ выбран так, что он совпадает со временем перехода соответствующей точ-
ки с недеформированной границы на свободную поверхность выдавливаемого
объёма, то есть

x0(τ) = xC(τ), y0(τ) = yC(τ).

В силу ортогональности треугольников ABD и AEC, а также равенства ли-
ний AD и AE между собой справедливо соотношение

|AC| =
√
2 |AB| cos(η).

Координаты точек A и C находятся как проекции прямой AB и ломаной
линии BAC на оси x и y:

xA = |AB| sin(θ),
yA = Vyt+ |AB| cos(θ),

xC = |AB| sin(θ) + |AC| cos(δ),
yC = Vyt+ |AB| cos(θ)− |AC| sin(δ)

здесь δ = π
4
−η+ θ−ψ. Из полученных равенств можно вывести соотношение

между координатами точки C:

xC
(1 + ωcos(δ))

=
(yC + t)tg(θ)

(1− ωtg(θ)sin(δ))
, (3)

где ω =
√
2

vα
=

√
2 sin(θ)
cos(η)

.
Так как точка C лежит на недеформированной поверхности, при форме за-

готовки y = f(x), справедливо равенство

yC(t) = f(xC(t)). (4)
Точка A лежит на пересечении деформированной поверхности и клина, по-

этому

xA =
xC

1 + ω cos δ
= vα

∫ t

τA

cos
(π
4
− δ
)
dt + xC (τA) ,

yA =
yC + tωtgθ sin δ

1− ωtgθ sin δ
= vα

∫ t

τA

sin
(π
4
− δ
)
dt + yC (τA) ,

(5)
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где τA – время начала движения материальной точки, имеющей в момент
времени t координаты xA(t),yA(t).

Соотношения (3) – (5) представляют собой систему четырёх уравнений с че-
тырьмя неизвестными функциями: xC(t), yC(t), δ(t), τA(t).

Дифференцированием по t эта система может быть приведена к системе диф-
ференциальных уравнений с отклоняющимся аргументом:

y′C (t)− f ′ (xC) x
′
C = 0,

x′Cz1 − y
′

Cz2 − ωψ
′ [
xC sin δz21 − (yC + t) cos δz22

]
= z2,

x′Cz1 − ψ
′
xCz

2
1ω sin δ + τ ′A [vα cos (η − θ + ψ(τA))− x′C (τA)]

= vα cos (η − θ + ψ) ,

y
′

C

z2
tgθ

− ω cos δ
z2
tgθ

ψ
′
[ttgθ + z2(yC + tωtgθ sin δ)] +

+τ ′A [vα sin (η − θ + ψ(τA))− y′C (τA)] = vα sin (η − θ + ψ)− ω sin δz2.

(6)

Здесь z1 =
1

1 + ωcos(δ)
, z2 =

tg(θ)

1− ωtg(θ)sin(δ)
. В момент начала процесса

деформирования

t = 0, xC = 0, yC = 0, τA = 0, δ0 =
π

4
− η + θ − ψ (0) ,

z10 =
1

1 + ω cos δ0
, z20 =

tgθ

1− ωtgθ sin δ0
,

(7)

и система (6) примет вид

y′C − f ′ (0) x′C = 0,

x′Cz10 − y
′

Cz20 = z20,

x′C +
τ ′A
z10

[
vα cos

(π
4
− δ0

)
− x′C

]
=
vα
z10

cos
(π
4
− δ0

)
y

′

C +
τ ′Atgθ

z20

[
vα sin

(π
4
− δ0

)
− y′C

]
=
vαtgθ

z20
sin
(π
4
− δ0

)
− ωtgθ sin δ0.

(8)

(8) – система четырёх уравнений с тремя неизвестными – x′C , y′C , τ ′A. Условие
совместности этой системы

f ′(0) =
z10
[(
vα cos

(
π
4
− δ
)
z10 − z20

)
(z20 − tg (θ))− z20vα sin

(
π
4
− δ0

)
tg (θ) (z10 − 1)

]
z20
[
vα cos

(
π
4
− δ
)
(z20 − tg (θ)) z10 + z20tg (θ) (1− z10)

(
1 + vα sin

(
π
4
− δ0

))]
определяет начальное значение функции δ(t). При f ′

x(0) = 0 это условие сов-
падает с уравнением, связывающим углы раствора клина θ и раскрытия веера
ψ в задаче о внедрении клина в полупространство:
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cos (2θ − ψ0) =
cosψ0

1 + sinψ0

. (9)

Форма деформированной границы на этом этапе определяется функцией, яв-
ляющейся решением системы (6) и имеющей вид

y = F (x).

Поскольку область AECF движется как жёсткое целое, поле напряжений в
этой области в рамках теории идеального жесткопластического тела не опреде-
лено. Приведённое на (рис. 1) поле прямолинейных характеристик определяет
напряжённое состояние, которое может рассматриваться как возможное, ста-
тически допустимое продолжение поля напряжений в эту область. Оно имеет
вид

σ1 = 0, σ2 = −2k.

Прямая линия AC является линией разрыва напряжений, на ней выполняется
условие

njσij = 0,

а в области AFC

σij = 0.

поэтому граничные условия на деформированной свободной поверхности вы-
полняются.

Усилие, необходимое для внедрения клина, рассчитывается по формуле

p = 4k (1 + ψ) |AB | sin θ. (10)
Схема пластического течения на втором этапе деформирования представлена

на рис. 2

Рис. 2. Схема пластического течения при ψ = 0
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Все точки области A′C ′C1B1A1 в каждый момент времени t (t≥t∗)движутся
с одной и той же скоростью v, проекции которой на оси координат равны:

vx = vα cos (η − θ) , vy = vα sin (η − θ) .

Уравнение подвижной границы A′C ′C1 определяется функцией y = F (x),
которая является решением системы (6), и имеет вид

y (x, t) = F (x− vα (t− t∗) cos (η − θ)) + vα (t− t∗) sin (η − θ) . (11)
На рис. 3 представлено пластическое течение в окрестности точки C. В ре-

зультате вдавливания клина точка C, в момент времени t находившаяся на
недеформированной поверхности, при t+∆t займёт положение C ′, а дуга CC1

перейдёт в дугу C ′C1. В силу равномерного движения области A′C ′C1B1A1 по
направлению α-линии:

CC
′
= vα∆t .

Если рассматривать ∆t как бесконечно малый промежуток времени, то дуги
CC1 и C ′C1 можно считать прямолинейными.

На рис. 3 выполнены дополнительные построения: отрезки CH и C ′E постро-
ены параллельно оси y, а отрезки C1F и CG параллельны оси x. Из треуголь-
ников CC ′G, FHC1, CFC1 следует:

|C1E| = |CC1| cosϕ−
∣∣∣CC ′

∣∣∣ cos (η − θ) ,

|C ′E| = |CC1| sinϕ+
∣∣∣CC ′

∣∣∣ sin (η − θ) ,

|CC1| =
∆t

sinϕ+ cosϕtg (η − θ)
.

Рис. 3. Пластическое течение в окрестности точки C

В силу того, что vα∆t = tgφ:

tgφ =
1 + vα sin (η − θ) [1 + tg(η − θ)ctgϕ]

ctgϕ− vα cos (η − θ)− vα sin (η − θ) ctgϕ
. (12)
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При ∆t → 0 хорда CC1 станет касательной к недеформированной поверх-
ности y = f(x) в точке C, а хорда C ′C1 – касательной к деформированной
поверхности y = y(x, t) в той же точке C, поэтому

tgϕ = −f ′ (xC) , (13)

tgφ = − ∂y

∂x

∣∣∣∣
(x,t)=(xC ,tC)

= −F ′(xC), (14)

где tC – время начала движения точки C.
Положение точки C определяется пересечением недеформированной поверх-

ности y = f(x) с линией

y = xtg (η − θ) + VytC ,

откуда следует равенство

xCtg (η − θ)− tC = f (xC) . (15)
Введение новой переменной

x̃ = xC − vα (t− tC) cos (η − θ) (16)
и подстановка (13) и (14) в (12) приводят к уравнению

F ′(x̃) =
f ′ (xC)− vα sin (η − θ) [tg (η − θ)− f ′ (xC)]

vα sin (η − θ)− vα cos (η − θ) f ′(xC) − 1
. (17)

Система уравнений (15) – (17) при условии F (xC) = yC определяет ниже точ-
ки C некоторую проходящую через эту точку кривую y = F (x), которая, пере-
мещаясь вдоль линии скольжения со скоростью vα, образует деформированную
границу на втором этапе деформирования. Выполненная замена переменных
эквивалентна обратному перемещению деформированной границы из положе-
ния A′C ′, которое она занимала в момент времени t (рис. 2) в положение AC,
занимаемое ею в момент времени t∗.

При ψ = 0 процесс деформирования происходит только вдоль линии разрыва
скоростей B1C1 и вся область B1A1A

′C1 движется как жёсткое целое. В каче-
стве возможного статически допустимого продолжения поля напряжений в эту
область можно рассматривать однородное напряжённое состояние

σ1 = 0, σ2 = −2k.

Так как материал в области A1A
′C ′C1 свободен от напряжений и не оказывает

давления на клин, то при расчёте усилия, необходимого для внедрения клина,
учитывается только часть площади контакта B1A1:

p = 4k |A1B1| sin θ.
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Рассмотренное решение задачи о внедрении клина в выпуклую заготовку име-
ет место при условии

η≥θ
и будет полным, если существует статически допустимое продолжение поля

напряжений ниже линии BDEC.
Необходимо найти распределение деформаций в окрестности особенностей

поля линий скольжения: линии разрыва скоростей перемещений (BDEC) и цен-
тра веера характеристик (точка A).

Деформации на линии разрыва скоростей определяются величиной удельной
диссипации энергии W , которая зависит от нормальной Vn = 0 и касательной

[Vτ ] = V + − V − =
sin θ

cos η
составляющих скорости, а также нормальной скорости

распространения линии BDEC – G [8, 9].
Скорость G определяется соотношением

G =
1

|gradf |
=

1√(
∂f
∂x

)2
+
(

∂f
∂y

)2 , (18)

где f(x, y) = t – функция, определяющая уравнение линии разрыва скоростей
перемещений.

Уравнения для составляющих линии BDEC имеют вид:
– линия BD: − [y − tg (η − θ)x] = t;

– линия DE:
{
x = xA +R cos ξ
y = yA +R sin ξ

, R = |AE | , ξ = α− π
2
;

– линия EC: y = xtg
(
π
4
− δ
)
+ yC − xCtg

(
π
4
− δ
)
.

Тогда из (18):

G =


cos (η − θ)

dxA
dt

cos ξ +
dyA
dt

sin ξ +
dR

dt
, ξ∈

[
η − θ − π

2
; η − θ − π

2
+ ψ

]
(xC − x) δ′

cos
(
π
4
− δ
) + cos

(π
4
− δ
) [
y′C − x′Ctg

(π
4
− δ
)] (19)

Здесь

dxA
dt

=
x

′
C (1 + ω cos δ) + xCω sin δδ

′

(1 + ω cos δ)2
,

dR

dt
=
x

′
C cos η sin θ (1 + ω cos δ) + xC cos ηω sin θ sin δδ

′

(sin θ)2 (1 + ω cos δ)2

dyA
dt

=

[
y

′
C + ωtgθ

(
sin δ + t cos δδ

′)]
(1− ωtgθ sin δ) + (yc + tωtgθ sin δ)ωgθ cos δδ

′

(1− ωtgθ sin δ)2
.
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Полученные значения скорости G позволяют определить величину объёмной
плотности диссипации энергии

W =
[Vτ ]

G− Vn
,

от которой зависит первое главное значение тензора конечных деформаций
Альманси

E1 =
W

2

4

[√
1 +

4

W
2 − 1

]
.

Деформации в окрестности центра веера определяются решением системы
уравнений

da11
dα

A− a11 sinα cosα + a21 (cosα)
2 = 0,

da12
dα

A− a12 sinα cosα + a22 (cosα)
2 = 0,

da21
dα

A− a11 (sinα)
2 + a21 sinα cosα = 0,

da22
dα

A− a12 (sinα)
2 + a22 sinα cosα = 0.

Здесь aij – компоненты тензора дисторсии, A =
vα − a

′
cosα− b

′
sinα

vα
, a′

=

dxA
dt

, b′ =
dyA
dt

– закон движения центра веера линий скольжения. Приведённая
система может быть решена методом Рунге-Кутты IV порядка; в силу того, что
частица попадающая в веер получает начальные деформации на линии EC,
решение системы должно удовлетворять начальным условиям

A =

[
1 0

WEC 1

]
.

2. Численное решение. Пусть абсолютно твёрдый клин y = |x| ctg(θ)

внедряется в заготовку, имеющую форму гиперболического цилиндра
(y − a)2

a2
−

x2

b2
= 1. Для данной задачи возможны три варианта пластического течения.

В первом случае угол раскрытия веера ψ(t) в течение всего процесса пласти-
ческого течения будет больше нуля. Вследствие наличия у гиперболы асимптот
y = ±a

b
x процесс будет стремиться к некоторому автомодельному режиму, со-

ответствующему вдавливанию клина y = |x| ctg(θ) в клин y =
a

b
|x|. Форма

подвижной границы в этом случае находится из решения системы уравнений
(6).
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Второй случай имеет место, если выполняется условие

tg
(π
4
− η + θ

)
≥a
b
.

В данном случае при малых глубинах внедрения клина течение происходит
при ненулевом ψ. Форма подвижной границы определяется решением систе-
мы (6). При дальнейшем внедрении клина угол раскрытия веера обращается в
нуль и процесс деформирования стремится к автомодельному режиму. Форма
деформированной границы определяется из решения системы (15) – (17).

Третий случай имеет место при

tg
(π
4
− η + θ

)
<
a

b
.

Тогда решение может быть построено только до момента, когда прямая линия
AC займёт положение касательной к гиперболе в точке C. Для данной схемы
это предельное положение линии AC, позволяющее построить статически до-
пустимое продолжение поля напряжений в жёсткую область.

Пусть гиперболический цилиндр задаётся уравнением

(y −
√
2)2

2
− x2

2
= 1,

угол раствора клин равен π
4
, коэффициент трения µ = 0.12, то есть η≈0.67

радиан, тогда уравнение недеформированной поверхности примет вид

yC =
√
2−

√
x2C + 2.

При введении обозначений:

xCz
2
1sinδ − (yC + t) z22cosδ = A,

xCz
2
1ωsinδ = B,

vα cos (η − θ + ψ (τA))− x
′

C (τA) = C,

ωcosδz2
tgθ

[ttgθ + z2 (yC + tωtgθsinδ)] = D,

vα sin (η − θ + ψ (τA))− y
′

C (τA) = E,

vα sin (η − θ + ψ)− ωsinδz2 = G,

система (6) запишется в виде
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y
′

C =
−xCx

′
C√

x2C + 2
,

x
′

Cz1 − y
′

Cz2 + Aωδ
′
= z2,

x
′

Cz1 +Bδ
′
+ Cτ ′A = υα cos

(π
4
− δ
)
,

y
′

C

z2
tgθ

+Dδ
′
+ Eτ ′A = G .

Полученная система может быть сведена к одному дифференциальному урав-
нению с запаздывающим аргументом относительно δ

′
= −ψ′ . Это уравнение

имеет вид

δ
′
=

(
υα cos

(
π
4
− δ
)
E − CG

)
tgθ
(
z1
√
x2C + 2 + z2xC

)
− z1z2Etgθ

√
x2C + 2− Cz22xC

(BE − CD) tgθ
(
z1
√
x2C + 2 + z2xC

)
− z1AωEtgθ

√
x2C + 2− Cz2xCAω

.

Данное уравнение решается методом последовательного интегрирования [10].
Отрезок времени на котором определяется неизвестная функция разбивается
на n шагов. Функции, зависящие от параметра запаздывания на первом шаге
определяются начальными условиями для системы (6), на каждом i-м шаге –
решением, полученным на (i− 1)-м шаге.

Решение уравнения на каждом из шагов находится с помощью численных ме-
тодов (например, метод Адамса) с последующей интерполяцией функции ψ (t).

Значения неизвестных функций в окрестности t = 0 для первого шага:
δ (τA) = δ0, y

′
C (τA) = y

′
C (0) = 0, x′C (τA) = x′C (0) = z20

z10
.

На рис. 4 приведён график изменения угла раскрытия веера с течением вре-
мени. Угол веера обращается в нуль и процесс течения переходит ко второму
этапу при t≈0.523.

Геометрическое представление пластической области и деформированной по-
верхности материала дано на рис. 5.

На рис. 6 приводится сравнительное построение деформированных поверхно-
стей для задачи с учётом (сплошная линия) и без учёта коэффициента трения
(пунктирная линия). При учёте коэффициента трения образование деформиро-
ванной поверхности происходит на большей части образца, чем в случае отсут-
ствия трения.

На рис. 7 представлен график изменения удельного усилия, необходимого для
внедрения клина.

На рис 8 приведено распределение деформаций на линии разрыва скоростей
перемещений BDEC и в окрестности центра веера линий скольжения в момент
времени t = 0.3. Из рисунка видно, что наибольшие деформации наблюдаются
в окрестности центра веера линий скольжения.



100 И. В.КАНАШИН, А.Л. ГРИГОРЬЕВА, Я. Ю. ГРИГОРЬЕВ

Рис. 4. График зависимости угла раскрытия веера характеристик от времени ψ(t)

Рис. 5. Пластическая область и деформированная поверхность в задаче о вдавли-
вании клина y = |x| ctg(θ) с углом раствора 22◦31′2′′ в гиперболический цилиндр
y =

√
2−

√
x2 + 2
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Рис. 6. Деформированная поверхность с учётом и без учёта коэффициента трения

Рис. 7. График зависимости удельного усилия, необходимого для внедрения клина,
от времени p(t)

3. Выводы. В данной работе для задачи о внедрении клина в выпук-
лую заготовку были выведены: система уравнений для определения парамет-
ров пластической области и деформированной поверхности материала в каж-
дый момент времени; выражение, позволяющее вычислить необходимую для
внедрения клина нагрузку; соотношения для расчёта деформаций, получаемых
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Рис. 8. Распределение деформаций на линии разрыва скоростей перемещений и в
окрестности центра веера линий скольжения при t = 0.3

частицами материала на линии разрыва скоростей перемещений и в центре ве-
ера характеристик.

Построены графики изменения угла раскрытия веера характеристик и необ-
ходимой для внедрения клина нагрузки, построены пластическая область и
деформированная поверхность, рассчитаны получаемые частицами материала
деформации для задачи о внедрении клина с углом раствора 22°31’2” в гипер-

болический цилиндр
(y −

√
2)2

2
− x2

2
= 1 с коэффициентом трения µ = 0.12.

Учёт коэффициента трения приводит к тому, что деформирование матери-
ала происходит на большей части поверхности заготовки, чем при отсутствии
трения.

Из полученного распределения деформаций следует, что наибольшие дефор-
мации частицы материала получают в окрестности центра веера характеристик,
то есть точки, в которой деформированная поверхность подминается клином.
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