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Аннотация. Исследуется динамика одномерных упругих деформаций в разномодульном
изотропно-упругом полупространстве под действием циклического одноосного растяжения-
сжатия на его границе. Обобщенное решение нестационарной начально-краевой задачи стро-
ится в форме рекуррентной последовательности локальных решений и учитывает столкнове-
ния и отражения волновых фронтов. Показано, что в приграничной области деформации на
каждом такте цикла изменяются по сценарию «слой растяжения – слой сжатия – жесткий
слой», а на удалении от границы динамически перераспределяются за счет многократных
взаимодействий волн. Пакет из чередующихся сжатых и жестких слоев убегает вперед со
скоростью быстрой характеристики, при этом суммарная зона растяжения остается позади.
Такое перераспределение деформаций при циклическом растяжении-сжатии разномодульно-
го полупространства происходит как при существенной, так и при малой разнице между
скоростями быстрой и медленной характеристик.
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Дудко Ольга Владимировна, кандидат физико-математических наук, ведущий научный
сотрудник лаборатории нелинейной динамики деформирования ИАПУ ДВО РАН, доцент
департамента программной инженерии и искусственного интеллекта ДВФУ;
e-mail: dudko.ov@dvfu.ru; https://orcid.org/0000-0001-7493-6360; AuthorID: 6525
Лаптева Анастасия Александровна, кандидат физико-математических наук, младший
научный сотрудник лаборатории нелинейной динамики деформирования ИАПУ ДВО РАН,
доцент департамента программной инженерии и искусственного интеллекта ДВФУ;
e-mail: lanastal@mail.ru; h t t p s : / / o r c i d . o r g / 0 0 0 0 - 0 0 0 2- 1 7 0 3- 0 4 7 1;
AuthorID: 119796

для цитирования: Дудко О.В., Лаптева А. А. Циклическое одноосное
растяжение-сжатие разномодульного упругого полупространства // Вестник
Чувашского государственного педагогического университета им. И.Я. Яковлева.
Серия: Механика предельного состояния. 2025. №2(64). С. 105–117.
DOI: 10.37972/chgpu.2025.64.2.002. EDN: XENARA

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International
(CC-BY 4.0).

© Дудко О. В., Лаптева А. А. 2025
Поступила: 10.03.25; принята в печать: 14.04.25; опубликована: 19.12.25.

105



Vestn. Chuvash. Gos. Ped. Univ. im. I.Ya.Yakovleva Ser.: Mekh. Pred. Sost.

DOI: 10.37972/chgpu.2025.64.2.002 EDN: XENARA
Research Article

O.V.Dudko1,2, A. A. Lapteva1,2

CYCLIC UNIAXIAL TENSION-COMPRESSION OF A
BIMODULAR ELASTIC HALF-SPACE

1Institute of Automation and Control Processes of the FEB RAS, Vladivostok, Russia
2Far Estern Federal University, Vladivostok, Russia

Abstract. The dynamics of one-dimensional elastic deformations in a bimodulus isotropic-
elastic half-space under cyclic uniaxial tension-compression at its boundary is investigated. The
generalized solution to the nonstationary initial-boundary value problem is constructed in the form
of a recursive sequence of local solutions, accounting for the collisions and reflections of wavefronts.
It is shown that in the near-boundary region, deformations at each cycle step follow the scenario
”tension layer – compression layer – rigid layer”, while at a distance from the boundary, they
dynamically redistribute due to multiple wave interactions. A packet of alternating compressed
and rigid layers runs forward at the velocity of the fast characteristic, while the total tensile region
lags behind. Such a redistribution of deformations under cyclic tension-compression of a bimodulus
half-space occurs both when the difference between the fast and slow characteristic velocities is
significant and when it is small.
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Введение. Существуют материалы (горные породы и грунты [1, 2], бе-
тоны [3], асфальтовые покрытия [4], композиты [5], пеноматериалы [6] и др.),
которые на начальной стадии деформирования по-разному реагируют на растя-
жение и сжатие. Упругое поведение подобных материалов в предположении их
сплошности, однородности и изотропии изучает разномодульная теория упруго-
сти. В настоящей работе рассматривается связный разномодульный материал с
ненулевыми модулями упругости для сжатия и растяжения (в отличие от сыпу-
чих сред [7] и гибких материалов [8], которые сопротивляются только одному
типу нагружения – или сжатию, или растяжению). Для описания механиче-
ского поведения такого материала выбран тензорнолинейный вариант модели
Мясникова-Олейникова [8] с упругим потенциалом, где два слагаемых из че-
тырех имеют неаналитическую форму. При одномерных малых деформациях
уравнение движения среды [8] принимает квазилинейную форму с перемен-
ным коэффициентом, чувствительным к знаку деформации. Волны растяже-
ния и сжатия, возникающие в решении такого уравнения, движутся с разными
скоростями и могут сталкиваться, порождая специфические эффекты, невоз-
можные в линейно-упругой среде. Так, в [9—11] показаны сложные волновые
картины, возникающие в результате попутных и встречных столкновений волн
деформаций в разномодульных телах при простых режимах одноосного гра-
ничного нагружения с одиночным импульсом растяжения-сжатия. Очевидно,
что циклические нагрузки и вибрации еще больше усложняют динамику упру-
гого деформирования разномодульных материалов. В представленной работе
ставим цель подробно проследить (насколько это возможно) за формировани-
ем динамического поля деформаций с учетом столкновений и отражений волн
в разномодульном упругом полупространстве, подверженном циклическому од-
ноосному знакопеременному нагружению. Граничное условие будем задавать
функцией перемещения в форме линейного сплайна, что позволит при реше-
нии нестационарной начально-краевой задачи воспользоваться рекуррентным
подходом, опробованным ранее [9, 10] на более простых режимах нагружения.

1. Модельные соотношения. Система уравнений динамики адиабатиче-
ского деформирования разномодульной изотропной упругой среды Мясникова-
Олейникова [8] при малых деформациях и отсутствии массовых сил имеет вид

σ =
∂W

∂e
, ∇ · σ = ρv̇, e =

1

2

(
∇⊗ u+ (∇⊗ u)T

)
, v = u̇,

W =
λ

2
E2

1 + µE2 − νE1

√
E2 + α

E3
1√
E2

,
(1)

где σ – тензор напряжений Коши; e – тензор малых деформаций с инвариан-
тами E1 = tr(e), E2 = tr(e2); u – вектор перемещений; v – вектор скорости; W
– упругий потенциал c модулями упругости λ, µ в линейной части модели и ко-
эффициентами ν, α, отвечающими за физическую нелинейность (разномодуль-
ность) среды [8]; все функции зависят от декартовых координат x = {x1, x2, x3}



108 О. В.ДУДКО, А. А. ЛАПТЕВА

и времени t; ∇ = {∂/∂x1; ∂/∂x2; ∂/∂x3}, ♢̇ = ∂♢/∂t. Принятая малость деформа-
ций уравнивает эйлеров и лагранжев подходы к описанию движения сплошной
среды и позволяет в (1) пренебречь изменением плотности (ρ ≈ ρ0(1−E1) ≈ ρ0
при |E1| ≪ 1).

В одномерном случае (x1 = x, u = {u(x, t), 0, 0}, ∂♢/∂x = ♢x) система (1)
принимает вид

σ(e) = ω(e) · e, (ω(e) · e)x = ρü, e = ux, v = u̇,

ω(e) = λ+ 2µ− 2(ν − α) · e/|e|.
(2)

С учетом (e/|e|)x=(ux/|ux|)x=0 уравнение движения в (2) записывается как

(c(e))2uxx = ü, (3)

где кусочно-постоянная характеристическая скорость зависит от типа дефор-
мации:

c(e) =

√
ω(e)

ρ
=

{
a =

√
(λ+ 2µ+ 2(ν − α)) · ρ−1, e < 0,

b =
√
(λ+ 2µ− 2(ν − α)) · ρ−1, e > 0.

(4)

В (4) считаем, что a > b > 0 при ν > α, λ + 2µ > 2(ν − α). В этом случае
уравнение (3) описывает одномерные продольные движения связной разномо-
дульной упругой среды [8] с различными конечными скоростями распростра-
нения деформаций сжатия и растяжения. Уравнению (3) с характеристической
скоростью (4) удовлетворяет решение Д’Аламбера

u(x, t) = f(x− c(e)t) + g(x+ c(e)t), (5)

где неизвестные функции от аргументов x± c(e)t определяются с учетом крае-
вых условий задачи. При этом скорость c(e) также может являться неизвестной
величиной.

2. Сильные разрывы в решении уравнения (3) и их столкновение.
При недифференцируемых краевых условиях (например, ступенчатой гранич-
ной нагрузке) решение уравнения движения (3) становится обобщенным [7]. В
нем появляются разрывы – скачки производных непрерывной функции u(x, t).
На фронтах сильных разрывов (плоских продольных волнах деформаций со
скачками первых производных перемещения) граничными условиями являют-
ся условие непрерывности перемещений и условия сохранения на разрыве [7,
12], следующие из интегральных законов сохранения. При малых одномерных
деформациях эти соотношения принимают вид

u+ = u−, σ(e+)− σ(e−) = ρ(ẋ(t))2(e+ − e−), (6)

где ẋ(t) – скорость движения фронта сильного разрыва x = x(t); индексы «+» и
«−» указывают на значения функций в малых окрестностях впереди и позади
x(t) соответственно.

Из второго уравнения (6) с учетом (2), (4) следует существование трех типов
сильных разрывов [7]: полусигнотон x = γ(t) при e+ = 0, e− ̸= 0 или e+ ̸= 0,
e− = 0; простой разрыв x = ξ(t) при e+ > 0, e− > 0 или e+ < 0, e− < 0; ударная
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волна x = Σ(t) при e+ > 0, e− < 0. Отметим, что принятое в работе положе-
ние о связности разномодульной среды не дает появиться в решении уравнения
(3) еще одному типу разрывов – отколу [7] (разрыву сплошности), возможному
в несвязных сыпучих и гранулированных материалах. Полусигнотоны и про-
стые разрывы входят в семейство характеристик уравнения (3) и могут быть
быстрыми фронтами сжатия (|γ̇a| = |ξ̇a| = a > b) или медленными фронтами
растяжения (|γ̇b| = |ξ̇b| = b). Скорость ударной волны ограничена скоростями
медленной и быстрой характеристик: |Σ̇| =

√
(b2e+ − a2e−)/(e+ − e−) ∈ (b; a).

В [12] показано, что однозначность решения краевой задачи для гиперболи-
ческого уравнения, подобного (3), можно обеспечить вводом условий эволюци-
онности разрывов, которые на продольной волне x(t) сводятся к системе нера-
венств

c(e+) ⩽ |ẋ(t)| ⩽ c(e−). (7)

Согласно (7), ударная волна и простые разрывы эволюционны при всех соот-
ветствующих их типам значениях e+, e−. Полусигнотоны удовлетворяют усло-
вию (7) при e+ = 0, e− ̸= 0, т.е. когда они движутся в недеформированную
область среды.

Из условия неубывания энтропии [12] следует, что в разномодульной среде,
где скорость характеристик при сжатии выше, чем при растяжении (a > b), мо-
жет существовать только ударная волна сжатия. В [13] для трехконстантного
варианта модели [8] показано, что переход разномодульной среды от предвари-
тельного сжатия (c(e+)|e+<0 = a) к растяжению (c(e−)|e−>0 = b) происходит с
образованием жесткого слоя, ограниченного быстрой и медленной характери-
стиками. В [11] для отличной от [8] модели разномодульной среды доказано,
что движение подобного жесткого слоя с границами-полусигнотонами – бездис-
сипативный процесс.

Для решения уравнения (3) с учетом столкновений волн необходимы допол-
нительные условия, связывающие волновые картины до и после взаимодей-
ствия. Положим, что в некоторый момент времени в решении уравнения (3)
существуют два фронта сильных разрывов с известными координатами

xL(t) = XL + ẋL(t− τL), xR(t) = XR + ẋR(t− τR),

0 ⩽ xL(τL) < xR(τR), XL ̸= XR, t− τL ⩾ 0, t− τR ⩾ 0.
(8)

Если между фронтами xL(t), xR(t) нет других волн и ẋL ̸= ẋR, то возмож-
ны два варианта их столкновения: встречное при ẋL > 0 и ẋR < 0; попутное
при 0 < ẋR < ẋL или ẋL < ẋR < 0. Согласно указанным ограничениям на
скорости ẋL и ẋR, встречно могут столкнуться любые фронты сильных разры-
вов (независимо от их типов) с подходящими направлениями движения. В паре
фронтов-участников попутного столкновения убегающей волной может быть
фронт растяжения со скоростью b, а догоняющей – фронт сжатия со скоростью
a > b. Ударная волна может выступать в обоих качествах.
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Любое столкновение фронтов xL(t), xR(t) порождает как минимум две рас-
ходящихся волны – прямую xr(t) и отраженную xl(t):

xr(t) = X + ẋr(t− τ), xl(t) = X + ẋl(t− τ),

0 ⩽ xl(t) ⩽ xr(t), ẋr > 0, ẋl < 0.
(9)

Время возникновения τ и начальная координата X для волн xl(t), xr(t) вы-
числяются из системы уравнений

X = XL + ẋL(τ − τL) = XR + ẋR(τ − τR), (10)

следующей из (8), (9) при t = τ . Эта система также пригодна, когда после
столкновения xL(t) и xR(t) возникает три новых фронта (например, отраженная
волна xl(t) = X + ẋl(t − τ) и две границы жесткого слоя xar(t) = X + a(t −
τ), xbr(t) = X + b(t − τ), бегущие в прямом направлении). При xL(t)|∀t⩾0 = 0
система (10) соответствует падению волны xR(t) на границу среды x = 0. Таким
образом, уравнения (10) дополняют основные соотношения (6), (7) и позволяют
учитывать эффекты столкновения и отражения фронтов сильных разрывов в
решении нестационарной начально-краевой задачи.

3. Постановка задачи. Рассмотрим циклическое одноосное растяжение-
сжатие разномодульного упругого полупространства x ⩾ 0. До начала нагруже-
ния считаем полупространство не деформированным. Начальные и граничные
условия задачи смешанного типа для уравнения (3) задаем в перемещениях,
считая координату границы x = 0 неизменной ввиду малости деформаций:

u(x, 0)|x⩾0 = u̇(x, 0)|x⩾0 = 0,

u(0, t) = u0(t) =

{
0, t < t0 = 0,

kj(t− tj−1) + u0(tj−1), tj−1 ⩽ t < tj, j ∈ N.
(11)

Кусочно-линейная функция u0(t) в (11) соответствует знакопеременному цик-
лическому нагружению, если существуют не менее двух пар соседних сегментов
с угловыми коэффициентами разного знака: sgn(kj) = −sgn(kj−1). На рис. 1 по-
казан график линейного сплайна, удовлетворяющего такому условию.

Рис. 1. Граничное перемещение

Скорость граничного перемещения изменяется скачком в узловых точках
функции u0(t) (табл. 1) и на j-ом сегменте вычисляется как u̇0(t)|t∈[tj−1,tj) =
kj = (u0(tj)− u0(tj−1))/(tj − tj−1).
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j 0 1 2 3 4 5 6 7
tj ∗ 103, с 0.0 0.1 0.3 0.5 0.7 0.9 1.1 1.3

u0(tj) ∗ 103, м 0.0 -3.0 4.0 -3.0 4.0 -3.0 4.0 0.0

Таблица 1. Координаты узлов функции u0(t)

4. Результаты решения задачи. Обобщенным решением уравнения (3)
c краевыми условиями (11) является перемещение u(x, t) – линейный сплайн c
изломами на фронтах сильных разрывов и линейными локальными решениями
ui(x, t) в форме (5) между ними (i = 1, 2, . . .). Рекуррентный алгоритм вы-
числения последовательности функций ui(x, t) с учетом взаимодействия волн
детально изложен в [9]. Здесь кратко опишем лишь ключевые аспекты этого
процесса, а затем обсудим результаты, полученные с его помощью.

Каждое локальное решение ui(x, t) возникает в свой момент времени τi ⩾ 0

и существует в растущем интервале δi(t) = [x
(i)
l (t); x

(i)
r (t)] с координатами гра-

ниц в форме (9). Вне области определения ui(x, t)|x/∈δi(t), t<τi = 0. В каждом
локальном решении ui(x, t) неизвестны функции fi(x− c(ei)t), gi(x+ c(ei)t), па-
раметры ẋ

(i)
l , ẋ(i)r , Xi, τi границ интервала δi(t) и характеристическая скорость

c(ei) внутри δi(t). Если одну из неизвестных величин задать, то остальные вы-
числяются из замкнутой системы уравнений, составленной из соотношений (6)
на границах интервала δi(t) и уравнений (10) для учета эффектов взаимодей-
ствия волн. Известной величиной в локальном решении ui(x, t) логично считать
характеристическую скорость c(ei), поскольку согласно (4) она может прини-
мать только значения a или b. Конкретное значение c(ei) выбирается из пред-
положения, что границы интервала δi(t) эволюционны. Это выражается усло-
виями c(ei) ⩾ c(eL)

∣∣
x→x

(i)
l (t)−0

, c(ei) ⩾ c(eR)
∣∣
x→x

(i)
r (t)+0

, следующими из (7) при
известных c(eL), c(eR) в соседних с δi(t) интервалах. Для проверки коррект-
ности построенного локального решения с выбранным значением c(ei) служит
само условие (7). Согласно [13], неэволюционная волна-граница интервала δi(t)
заменяется на движущийся жесткий слой. Порядок возникновения локальных
решений определяется цепочкой неравенств τ1 < τ2 < . . . (τ1 = 0), где каждый
момент времени τi связан с одним из событий: изменение скорости гранично-
го перемещения; встречное или попутное столкновение волн; падение волны на
границу полупространства. В первом случае τi соответствует узлу граничного
перемещения (11), а во втором и третьем – вычисляется из (10).

Далее рассмотрим решения задачи с заданным граничным перемещением
(рис. 1), построенные для материалов с различными соотношениями a/b.

На рис. 2 показаны характеристическая плоскость {x−t} и графики дефор-
маций e(x̃, t), полученные при a/b ≈ 1.1 (песчаник [8]: λ = 1.78ГПа, µ = 8.7ГПа,
ν = 1.35ГПа, α = 0.48ГПа).

На плоскости {x−t} отрезки с отрицательным наклоном соответствуют отра-
женным волнам, разнотипные волны и зоны деформаций обозначены разными
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а)

б)

Рис. 2. Решение при a/b ≈ 1.1: а) плоскость {x− t}; б) графики деформаций

цветами, область перед передним фронтом не закрашена. Графики деформа-
ций e(x̃, t) построены для моментов времени 1○, 2○, оси x̃ нормированы по ко-
ординате переднего фронта, оси e имеют степенной масштаб, координаты волн
отмечены пунктирными линиями соответствующих цветов, фон используется
только для жестких слоев.

При заданной форме функции u0(t) (рис. 1) первый такт цикла начинается с
растяжения, порождающего при t = 0 передний фронт граничных возмущений
– медленный полусигнотон. Ударные волны возникают на границе полупро-
странства в моменты смены растяжения на сжатие при t = t1, t3, t5, растущие
жесткие слои – при t = t2, t4, t6, когда граничное сжатие меняется на растяже-
ние. Таким образом, деформации в малой окрестности границы x = 0 изменя-
ются по сценарию «растяжение – сжатие – жесткий слой» (рис.2а), который
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циклически повторяется с ростом t. График деформаций 1○ на рис.2б соот-
ветствует трем тактам такого сценария. В [14] подобная цикличность дефор-
мированного состояния показана в малой окрестности торца разномодульного
стержня под действием внешней гармонической нагрузки.

Эволюция поля деформаций на удалении от нагружаемой границы происхо-
дит за счет взаимодействия волн. При этом формирование сложной волновой
картины из прямых и отраженных фронтов различных типов начинается со
столкновения попутных волн. В первом попутном столкновении в решении на
рис. 2 участвуют передний фронт граничных возмущений (медленный полусиг-
нотон) и догнавшая его ударная волна (первая в серии). Рис. 2а и график 2○ на
рис. 2б показывают, что упругие деформации, возникающие на границе полу-
пространства под действием циклического растяжения-сжатия, на удалении от
границы динамически перераспределяются: чередующиеся сжатые и жесткие
слои убегают вперед, оставляя области растяжения позади. Вычислительные
эксперименты показали, что подобная структура поля деформаций формиру-
ется при заданном режиме нагружения разномодульной среды с любым соот-
ношением a/b > 1.

На рис. 3 показано решение для случая a/b ≈ 1.54. Значительная разни-
ца в скоростях быстрой и медленной характеристик позволяет четко разли-
чить чередование жестких и сжатых областей. Кроме того, на увеличенных
фрагментах (рис. 3а, 3б) видна неоднозначность взаимодействия определенных
типов волн. При встречном столкновении медленного и быстрого полусигно-

Рис. 3. Решение при a/b ≈ 1.54

тов возможны два исхода: пакет из двух границ жесткого слоя и отражен-
ной волны растяжения (рис. 3а(1)); быстрый простой разрыв и отраженная
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ударная волна (рис. 3а(2)). Аналогично, столкновение быстрого полусигното-
на с быстрым простым разрывом приводит либо к двум расходящимся вол-
нам сжатия (рис. 3а(3)), либо к жесткому слою и отраженной волне растяже-
ния (рис. 3б(4)). Подобные эффекты наблюдаются и при единичном импуль-
се растяжения-сжатия с последующим удержанием границы разномодульно-
го полупространства [10]. Во всех неоднозначных случаях одним из фронтов-
участников столкновения является быстрый полусигнотон – граница растущего
или исчезающего жесткого слоя. В отличии от полусигнотонов, простые разры-
вы могут сталкиваться только встречно и только с себе подобными. Их взаимо-
действие всегда происходит по солитонному типу и дает однозначный результат.

Заключение. В работе исследована динамика упругих деформаций при
циклическом одноосном растяжении-сжатии разномодульного полупростран-
ства. Показано, что за счет столкновений и отражений волн вдали от нагру-
жаемой границы формируется подвижная зона чередующихся сжатых и жест-
ких слоев без областей растяжения. Среди трех типов сильных разрывов, воз-
можных в разномодульной среде, в качестве особого случая выделен быстрый
полусигнотон – подвижная граница жесткого слоя. Установлено, что встречное
столкновение такой волны как с фронтами других типов, так и с себе подоб-
ными может иметь неоднозначный результат независимо от сложности режима
нагружения.

Представленные в работе результаты дополняют совокупность теоретических
представлений о динамике деформирования разномодульной упругой среды.
Они могут использоваться как модельная база в прикладных задачах расче-
та деформационного поведения реальных материалов (например, оснований
сооружений, железнодорожных и автотранспортных путей сообщения и др.),
подверженных циклическим и вибрационным нагрузкам.
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