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Аннотация. Предложен метод определения сумм тригонометрических рядов, основанный на
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x стержня. Функция u(x, t) является, в свою очередь, решением дифференциального урав-
нения (метод Фурье), описывающего механическое состояние тела в условиях воздействия
на него внешних сил. Найдены суммы семи тригонометрических рядов, которые могут най-
ти свое применение при решении задач физико-математических и технических дисциплин.
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Введение. Вопросы сходимости функциональных рядов к соответствую-
щим функциям и, обратная задача, – разложение функций в ряд, актуальны,
т.к. являются основой одной из важнейших областей математики методов реше-
ния задач в области математических и физических дисциплин - теории решения
дифференциальных уравнений [1—3].

С другой стороны, даже будучи уверенным в том, что исследуемый функ-
циональный ряд является сходящимся, аналитически определить функцию к
которой он сходится далеко не всегда является простой задачей. Однако, отме-
тим следующее. Решая задачи механики и техники методами математической
физики, можно аналитически определить состояние, например, нагруженного
тела в любой момент времени и в любой его точке, т.е. решение задачи проходит
в векторе “математика → физика”. Но если в этой ситуации изменить направле-
ние вектора исследования, т.е. зная состояние системы в определенной области
нагруженного тела и в известные интервалы времени, и зная функцию, которая
описывает это состояние решить полученное уравнение относительно тригоно-
метрического ряда, (если дифференциальное уравнение, описывающее состоя-
ние механической системы, решается методом Фурье), то найдем функцию (или
число) к которой сходится тригонометрический ряд, т.е. меняем вектор иссле-
дования на противоположный [4].

Цель работы - показать метод определения сумм тригонометрических рядов,
способом сопоставления физического анализа состояния нагруженного тела и
функции, описывающей это состояние, т.е. проводя исследования в направлении
“физика→математика”.

1. Результаты и обсуждение. Приведем несколько примеров, на кото-
рых будет показана сущность этого метода.

1. Рассмотрим покоящийся стержень постоянного поперечного сечения ци-
линдрической формы, концы которого не закреплены. Материал стержня од-
нородный и подчиняется закону Гука. Направим ось x по оси стержня. Пусть на
правый торец стержня внезапно начинает действовать постоянная сила F рав-
номерно распределенная по поверхности торца стержня и направленная вдоль
оси x (рис. 1).

Рис. 1. Упругий стержень, движущийся в условиях внезапно приложенной силы,
направленной вдоль его оси

Функция продольных перемещений поперечных плоскостей стержня, u (x, t)
в этих условиях удовлетворяет дифференциальному уравнению [4—8]:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
+
Fδ(x− l)

ρS
,
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при этом начальные условия:

u(x, 0) =
∂u(x, 0)

∂t
= 0,

граничные условия:
∂u(0, t)

∂x
=
∂u(l, t)

∂x
= 0.

Здесь, ρ – плотность вещества стержня, S – площадь поперечного сечения,
l – длина недеформированного стержня, c – скорость звука в стержне, t ≥ 0
– текущее от начала воздействия силы время, x – координата точки на оси
стержня, δ(x− l) – дельта-функция.

Искомая функция u (x, t) выражается тригонометрическим рядом [4—8]:

u (x, t) =
Ft2

2ρsl
+

2Fl

ρsc2π2

∞∑
m=1

(−1)m

m2
cos (

mπx

l
)

(
1− cos

mcπt

l

)
. (1)

Рассматривая ряд (1) (с учетом элементарных тригонометрических преобра-
зований) замечаем, что, исходя из физических соображений должно выполнят-
ся равенство u(x, t) = 0, на интервалах

0 ≤ t ≤ l − x

c
и 0 ≤ x ≤ l, (2)

т.е., те поперечные плоскости стержня до которых не дошла механическая волна
и та плоскость с координатой x до которой волна дошла на данный момент
времени t от начала воздействия на стержень приложенной к его торцу силы
не перемещаются, следовательно

∞∑
m=1

(−1)m

m2
sin2 mcπt

2l
cos

mπx

l
= −(cπt)2

8l2
.

Пусть
cπt

2l
= α,

πx

l
= β, тогда

(cπt)2

8l2
=
α2

2
.

С учетом (2) получаем
∞∑

m=1

(−1)m

m2
sin2mα cosmβ =− α2

2
(3)

при выполнении условий

0 ≤ β ≤ π, 0 ≤ α ≤ π − β

2
. (4)

Равенство (3) есть сумма ряда в указанных интервалах (4).
Очевидно, этот же участок стержня до которого не дошел волновой процесс

от начала воздействия силы на торец стержня, на данный момент времени t
не деформирован (однако, в данном случае, та плоскость до которой дошел
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волновой процесс будет деформированной, т.е. эта плоскость к данному участку
не относится) т.е. должно выполняться равенство

ε(x, t) =
∂u(x, t)

∂x
=

4F

ρSπc2

∞∑
m=1

(−1)m+1

m
sin2 mcπt

2l
sin

mπx

l
= 0

в интервалах

0 ≤ t <
l − x

c
и 0 ≤ x ≤ l,

где ε(x, t) – относительная деформация стержня. Тогда получаем
∞∑

m=1

(−1)m+1

m
sin2 mcπt

2l
sin

mπx

l
= 0,

или, с учетом введенных переменных α и β и сказанного выше
∞∑

m=1

(−1)m+1

m
sin2mα sinmβ = 0 (5)

в интервалах

0 ≤ α <
π − β

2
и 0 ≤ β ≤ π. (6)

Таким образом, ряд (5) сходится к нолю в интервалах (6).
Рассматривая эту же физическую задачу замечаем, что скорость движения

плоскостей стержня в интервалах (2) будет равна нолю, т.е.

V (x, t) =
∂u(x, t)

∂t
=

Ft

ρSl
+

2F

ρScπ

∞∑
m=1

(−1)m

m
sin

mcπt

l
cos

mπx

l
= 0.

Следовательно, на интервалах (2) получаем
∞∑

m=1

(−1)m

m
sin

mcπt

l
cos

mπx

l
= −cπt

2l
.

Введя переменные

γ =
cπt

l
и σ =

πx

l
, (тогда

γ

2
=
cπt

2l
)

окончательно получаем с учетом условий (2)
∞∑

m=1

(−1)m

m
sinmγ cosmσ = −γ

2
, (7)

в интервалах
0 ≤ σ ≤ π и 0 ≤ γ ≤ π − σ. (8)

В связи с этой же задачей, можно показать, что абсолютная деформация
стержня ∆l(t) в интервале времени

0 ≤ t ≤ l

c
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равна [9]

∆l(t) =
Ft

ρsc
,

тогда, исходя из физического смысла задачи, в этом интервале должно выпол-
няться равенство

u (l, t) = ∆l(t),

или
Ft2

2ρsl
+

4Fl

ρsc2π2

∞∑
m=1

(−1)m

m2
sin2 mcπt

2l
cosmπ =

Ft

ρsc
.

Т.к. cosmπ = ∓1 при m = 1, 2, 3, ..., то
∞∑

m=1

1

m2
sin2 mcπt

2l
= −(cπt)2

8l2
+
π2ct

4l
.

Пусть, как и выше,

cπt

2l
= α, тогда

(cπt)2

8l2
=
α2

2
,

cπ2t

4l
=
πα

2
и этот ряд можно записать

∞∑
m=1

1

m2
sin2mα =

α(π − α)

2
(9)

в интервале
0 ≤ α ≤ π

2
.

2. Рассмотрим второй пример. Аналогично рис. 1, но на левый торец стержня
(x = 0) внезапно действует продольная сила F = Pt, равномерно распределен-
ная по торцу стержня, где P постоянный коэффициент. Найти закон смещения
поперечных плоскостей стержня.

Решением этой задачи является функция [4—7]

u(x, t) =
Pt3

6ρSl
+

2Pl

ρSc2π2

∞∑
m=1

1

m2
cos

mπx

l

(
t− l

mπc
sin

mcπt

l

)
.

В этом случае, как и выше, те плоскости с координатой x до которых к момен-
ту времени t не дошла волна от начала действия силы на левый торец стержня
(включая ту плоскость до которой волна дошла) не перемещаются, следова-
тельно

u(x, t) = 0

в интервалах
0 ≤ t ≤ x

c
и 0 ≤ x ≤ l, (10)

т.е. должно выполняться равенство
∞∑

m=1

1

m2
cos

mπx

l

(
t− l

mπc
sin

mcπt

l

)
= −c

2π2t3

12l2
. (11)
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Обозначим
y =

πx

l
, z =

cπt

l
,

тогда
c2π2t3

12l2
=
tz2

12
и равенство (11) преобразуется в равенство

∞∑
m=1

1

m2
cosmy

(
t− t

mz
sinmz

)
= −tz

2

12
,

вынося t за скобку и проведя сокращение окончательно получаем сумму ряда
∞∑

m=1

1

m2
cosmy

(
1− 1

mz
sinmz

)
= − z

2

12
(12)

в интервалах 0 ≤ y ≤ π, 0 ≤ z ≤ y.
В свою очередь, и деформация стержня ε(x, t) в интервалах 0 ≤ t < x

c
и

0 ≤ x ≤ l равна нолю, следовательно

ε(x, t) =
∂u(x, t)

∂x
=

2P

ρSπc2

∞∑
m=1

1

m
sin

mπx

l

(
l

mπc
sin

mcπt

l
− t

)
= 0.

Пусть, как и выше,

y =
πx

l
, z =

cπt

l
,

тогда окончательно получаем сумму ряда
∞∑

m=1

1

m
sinmy

(
1

mz
sinmz − 1

)
= 0 (13)

в интервалах 0 ≤ y ≤ π, 0 ≤ z < y.
Также, и скорость плоскостей стержня с координатой x до которых не дошла

волна к моменту времени t от начала воздействия силы на левый торец стержня
равна нолю, т. е. на интервалах (10) справедливо равенство

v(x, t) =
∂u(x, t)

∂t
=

3pt2

6ρSl
+

2pl

ρSc2π2

∞∑
m=1

1

m2
cos

mπx

l

(
1− cos

mcπt

l

)
= 0,

тогда
∞∑

m=1

1

m2
cos

mπx

l

(
1− cos

mcπt

l

)
= −

(
cπt

2l

)2

.

С учетом введенных выше переменных y и z получаем
∞∑

m=1

1

m2
cosmy (1− cosmz) = −z

2

4
(14)

в интервалах 0 ≤ y ≤ π, 0 ≤ z ≤ y.
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Таким образом, найдены функции, к которым сходятся ряды (3), (5), (7), (9),
(12), (13), (14) в соответствующих интервалах

∞∑
m=1

(−1)m

m2
sin2mα cosmβ =− α2

2
, 0 ≤ β ≤ π, 0 ≤ α ≤ π − β

2
;

∞∑
m=1

(−1)m+1

m
sin2mα sinmβ = 0, 0 ≤ α <

π − β

2
и 0 ≤ β ≤ π;

∞∑
m=1

(−1)m

m
sinmγ cosmσ = −γ

2
, 0 ≤ σ ≤ π и 0 ≤ γ ≤ π − σ;

∞∑
m=1

1

m2
sin2mα =

α(π − α)

2
, 0 ≤ α ≤ π

2
;

∞∑
m=1

1

m2
cosmy

(
1− 1

mz
sinmz

)
= − z

2

12
, 0 ≤ y ≤ π, 0 ≤ z ≤ y;

∞∑
m=1

1

m
sinmy

(
1

mz
sinmz − 1

)
= 0, 0 ≤ y ≤ π, 0 ≤ z < y;

∞∑
m=1

1

m2
cosmy (1− cosmz) = −z

2

4
, 0 ≤ y ≤ π, 0 ≤ z ≤ y.

Анализируя каждый ряд в отдельности можно расширить область сходимо-
сти рядов. Поэтому на данном этапе правильнее было бы сказать , что данные
ряды сходятся, хотя бы, в отмеченных интервалах. Заметим, что доказывать
правильность найденных сумм рядов в соответствующих интервалах нет необ-
ходимости, т.к. 1) метод Фурье решения дифференциальных уравнений изве-
стен и доказан [3, 4, 8] 2) физический анализ состояния механической систе-
мы, проведенный в каждой задаче, в соответствующих интервалах координат
и времени достаточно тривиален и не требует дополнительных комментариев.
Очевидно, предложенный способ нахождения сумм тригонометрических рядов,
можно использовать и в других задачах математической физики. Ряды (5) и
(12) сходящиеся к нолю, по своему, интересны и могут найти свое применение
в математике.

Найденные суммы рядов (3), (5), (7), (9), (12), (13), (14) в расширенном спра-
вочнике [10], не обнаружены, т.е. найденные суммы являются новыми резуль-
татами.

2. Заключение. Предложен метод нахождения сумм тригонометрических
рядов посредством сопоставления физического анализа состояния нагруженно-
го тела и функции u(x, t), описывающей это состояние. Суть метода заключа-
ется 1) в решении уравнения одна часть которого есть функция, описывающая
состояние механической системы – u(x, t), ε(x, t) или v(x, t) (в ней содержится
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тригонометрический ряд), а другая часть – есть конкретное число или, неко-
торая, другая функция, обусловленные состоянием механической системы на
соответствующих интервалах координат и времени, 2) введением новых пере-
менных и определением координатных и временных интервалов им соответству-
ющих.
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