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Аннотация. В рамках теории малых деформаций на примере задачи о быстровращающемся
тонком диске проводится сравнение полей напряжений, перемещений и деформаций опреде-
ляемых для различных математических моделей изотропного идеального упругопластическо-
го тела, включающих гладкие или кусочно-линейные функции пластичности. Обсуждаются
общие положения плоского напряженного состояния. Все параметры материала являются по-
стоянными величинами. Показано, что при выборе кусочно-линейных функций пластичности
сингулярные режимы выполняются на границе раздела областей, в которых реализуются ре-
гулярные режимы пластичности. Установлено, что при увеличении параметра нагрузки про-
исходит смещение границы выполнения сингулярного режима. По этой причине соотношения
ассоциированного закона пластического течения в области смещения указанной границы ин-
тегрируются численно. Поскольку в процессе нагружения в пластической области изменение
положения границы между зонами выполнения регулярных режимов мало, в работе вместо
ассоциированного закона пластического течения выбирается ассоциированный закон пласти-
ческого деформирования. При определении напряженного и деформированного состояния
диска рассматривается степенное условие пластичности Карафиллиса-Бойса, которое явля-
ется одним из обобщений условия пластичности Мизеса, а также при увеличении показателя
степени компонент девиатора напряжений переходит в условие пластичности Ишлинского.
Рассмотрены процессы увеличения и снятия нагрузки. Приведены графики напряжений, пе-
ремещений, деформаций и годографа вектора напряжений.
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Abstract. Within the framework of the theory of small deformations, using the example of the
problem of a rapidly rotating thin disk, a comparison is made of the fields of stresses, displacements,
and deformations determined for various mathematical models of an isotropic ideal elastic-plastic
body, which include smooth or piecewise-linear plasticity functions. The general principles of plane
stress state are discussed. All material parameters are considered to be constant values. It is shown
that when choosing piecewise-linear plasticity functions, singular modes occur at the boundary
separating regions where regular plasticity modes are realized. It has been established that as the
load parameter increases, the boundary for the occurrence of the singular mode shifts. For this
reason, the relationships of the associated law of plastic flow in the region of the shifting boundary
are integrated numerically. Since, during loading in the plastic region, the change in the position of
the boundary between zones of regular modes is small, in this work, instead of the associated law
of plastic flow, the associated law of plastic deformation is chosen. In determining the stress and
strain state of the disk, the power condition of plasticity by Karafillis-Boyce is considered, which is
one of the generalizations of von Mises’ plasticity condition. Moreover, as the exponent increases,
the deviatoric stress components transition to Ishlinsky’s plasticity condition. The processes of
increasing and removing load are examined. Graphs of stresses, displacements, deformations, and
the stress vector hodograph are presented.
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Введение
Задача об упругопластическом состоянии тонкого вращающегося диска явля-

ется одной из простейших одномерных задач плоского напряженного состояния.
Тем не менее, учитывая практическую важность оценки состояния быстро вра-
щающихся дисков, которые являются элементами многих машин и конструк-
ций, интерес к этой задаче сохраняется до настоящего времени. В статье [1]
отмечается, что одной из первых работ в этом направлении является работа
Ф. Ласло 1925 г. [2], в которой рассматривались некоторые подходы к изуче-
нию деформирования вращающихся дисков. Работы, связанные с рассмотре-
нием упругопластического состояния вращающегося диска, можно классифи-
цировать, например, по выбору условия пластичности. Основная часть работ
связана с выбором условия пластичности Треска или условием пластичности
Мизеса. Выбор кусочно-линейных функций пластичности для идеально пла-
стического тела позволяет получить аналитическое решение задачи о диске, а
выбор гладких функций пластичности, в общем случае, приводит к необходи-
мости численного решения. При этом следует отметить, что для регулярных
режимов кусочно-линейных условий пластичности соотношения ассоциирован-
ного закона пластического течения интегрируются и переходят в соотношения
ассоциированного закона пластического деформирования, а для сингулярных
режимов эта процедура не имеет место.

При рассмотрении сплошных и кольцевых дисков под действием только сил
инерции в статье [3] выполнено сравнение напряженного состояния для усло-
вий пластичности Треска и Мизеса. Отмечается, что для условия Треска, когда
диск полностью переходит в пластическое состояние, значение параметра на-
грузки меньше, чем для условия Мизеса. Здесь следует отметить, что в [3] в
условии Треска и Мизеса выбирался предел пластичности на одноосное растя-
жение. Определение напряженного и деформированного состояния вращающе-
гося диска для условия Мизеса приведено в [4]; выполнено сравнение полей на-
пряжений и перемещений, полученных в рамках теории пластического течения
и деформационной теории. Рассматривая определения не только напряженного,
но и деформированного состояния при решении задачи об упругопластическом
состоянии сплошного вращающегося диска в работе [5] У. Гамером было вы-
сказано суждение о неприемлемости условия пластичности Треска, поскольку
это условие не позволяет получить одновременно неразрывные поля напряже-
ние и деформаций. В работе [6] было показано, что если в центре диска для
любой кусочно-линейной функции пластичности выполняется сингулярный ре-
жим, то в рамках теории пластического течения в малой окрестности центра
диска происходит сильный рост пластических деформаций, что приводит к на-
рушению сплошности. В работе [1] было предложено условие Треска дополнить
изотропным упрочением. Такой подход позволяет получить решения с непре-
рывными полями напряжений и перемещений. В этом случае математическая
модель пластической области дополнялась определяющим соотношением для
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эквивалентной пластической деформации, которое получается из представле-
ния элементарной работы напряжений на приращениях пластической дефор-
мации в виде произведения эквивалентного напряжения на приращение экви-
валентной пластической деформации. Учет трансляционного упрочнения при
определении напряженно-деформированного состояния диска рассматривался в
[7], задача решалась методом малого параметра. Влияние пластической сжимае-
мости на упругопластическое состояние вращающегося диска рассмотрено в [8].
Границы зарождения пластических областей для разных условий пластичности
рассматривались в [9]. В ряде работ изучалось упругопластическое состояние
дисков переменной толщины. В [10] рассматривался вопрос об определении про-
филя равнопрочного кольцевого диска для условия Мизеса. В предположении,
что все точки диска находятся в предельном состоянии пластические дефор-
мации равны нулю, деформации связаны с напряжениями согласно закону Гу-
ка. Данные условия позволяют получить уравнение для определения толщины
диска. В работе [11] выполнено определение профиля равнопрочного вращаю-
щегося диска переменной толщины для анизотропного материала, имеющего
разные пределы прочности при растяжении и сжатии. Интерес к определению
профиля равнопрочного кольцевого вращающегося диска также связан с ис-
пользованием функционально-градиентных материалов [12, 13]. В настоящей
работе предлагается алгоритм определения напряженного и деформированно-
го состояния вращающихся дисков при выборе гладких функций пластичности
и на их основе объяснения некоторых особенностей решения задачи при выборе
кусочно-линейных функций пластичности.

Постановка задачи
В рамках теории малых деформаций рассматривается упругопластическое

квазистатическое состояние быстровращающегося тонкого кругового диска по-
стоянной толщины. Принимается, что материал диска является идеально упру-
гопластическим, однородным и изотропным. Также принимается гипотеза о
естественном состоянии диска и приближение плоского напряженного состо-
яния, для которого все искомые величины являются осредненными по толщине
диска. Выбираются кусочно-линейные и гладкие функции пластичности. Рас-
сматривается цилиндрическая система координат ρθz, ось z которой проходит
через центр диска ρ = 0, а плоскость z = 0 является средней плоскостью. Внеш-
ний контур диска ρ = b свободен от усилий. На упругопластической границе и
границах между областями, в которых реализуются разные режимы пластич-
ности, выполняются условия непрерывности компонет тензора напряжений и
вектора перемещений. При выполнении численных расчетов выбирается усло-
вие пластичности максимального приведенного напряжения [14] и степенное
условие пластичности [15].

Плоское напряженное состояние
Задачи о плоском напряженном и плоском деформированном состояниях от-

носят к общей плоской задаче. Отмечается, что задача плоского напряженного
состояния не может рассматриваться как частный случай трехмерной задачи.
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В общей плоской задаче, когда функция текучести зависящая от ненулевых
главных компонент тензора напряжений F (σ1, σ2), используется в качестве пла-
стического потенциала, и ∂F/∂σ1 + ∂F/∂σ2 = 0. При этом осевая пластическая
деформация εp3 не определяется [16]. В монографии Д.Д.Ивлева [17] показано,
что система уравнений плоского напряженного состояния противоречивая.

В [18] показано, что процедура осреднения всех величин по толщине тонкого
диска приводит к обобщенному плоскому напряженному состоянию. Процедура
перехода к осредненным по толщине величин, в частности, снимает противоре-
чия, на которые указано в [17], а именно: осредненное осевое перемещение

1

h

∫ z=h/2

z=−h/2

wdz = 0,

осредненная осевая деформация

εz =
1

h

∫ z=h/2

z=−h/2

∂w

∂z
dz, εz = εz(ρ),

определяет изменение профиля диска.
Инкремент осредненной осевой пластической деформации определяется из

соотношений ассоциированного закона пластического течения

dεp3 =
∂F/∂σ3|σ3=0

∂F/∂σ1|σ3=0

dεp1 =
∂F/∂σ3|σ3=0

∂F/∂σ2|σ3=0

dεp2.

Отметим, что дифференцирование функции пластичности по компонентам тен-
зора напряжений выполняется до осреднения соотношений ассоциированного
закона пластического течения, что согласуется с подходом, приведенным в мо-
нографии А. Ю. Ишлинского и Д.Д. Ивлева [19].

Осредненные величины удовлетворяют известным предположениям о плос-
ком напряженном состоянии (выбрана декартова система координат)

σxz = σyz = σzz = εxz = εyz = εexz = εeyz = εpxz = εpyz = 0,

а все ненулевые величины не зависят от осевой координаты z.
Безразмерные величины
В настоящей работе все соотношения и величины приводятся к безразмер-

ному виду. За характерный масштаб величин, имеющих размерность напряже-
ний, выбирается значение предела пластичности k при одноосном растяжении,
за масштаб длины выбирается значение радиус диска.

Для всех величин, приведенных к безразмерному виду, сохраняются обозна-
чения, принятые для размерных величин, что не требует использования до-
полнительных обозначений и улучшает восприятие формул. Таким образом,
безразмерный предел пластичности обозначается символом k, значение которо-
го равно единице, σρ, σθ – безразмерные компоненты тензора напряжений, u –
безразмерная радиальная компонента вектора перемещений, E – безразмерный
модуль Юнга, m = (γω2b2)/(gk) – безразмерный комплекс, составленный из
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размерных величин: ω – угловая скорость вращения диска, g – ускорение сво-
бодного падения, γ – удельный вес. Компоненты тензора деформаций ερ, εθ, εz и
коэффициент Пуассона ν являются безразмерными величинами. Все параметры
материала, входящие в определяющие уравнения, рассматриваются как посто-
янные величины. Перемещения и деформации умножаются на безразмерный
модуль Юнга, что делает их величинами того же порядка, что и безразмерные
напряжения.

Математическая модель упругой области диска
Рассмотрим случай, когда в процессе нагружения в упругой области дис-

ка имеются остаточные необратимые деформации. Тогда, полные деформации
включают упругие и необратимые остаточные деформации (ε∗ρ, ε∗θ, ε∗z).

Математическая модель упругой области диска включает: уравнение равно-
весия в собственной системе отсчета [4, 20] (уравнение движения в инерциаль-
ной системе отсчета [21])

dσρ
dρ

+
σρ − σθ

ρ
= −mρ; (1)

соотношения закона Гука.

Eεeρ = E(ερ − ε∗ρ) = σρ − νσθ,

Eεeθ = E(εθ − ε∗θ) = σθ − νσρ, (2)

Eεez = E(εz − ε∗z) = −ν(σρ + σθ);

условие совместности полных деформаций

ρ
dεθ
dρ

+ εθ − ερ = 0; (3)

соотношения Коши, определяющие деформации через перемещения

ερ =
du

dρ
, εθ =

u

ρ
. (4)

Из уравнений (1) – (4) методом исключения переменных можно получить
систему дифференциальных уравнений для определения напряжений

ρ
dσρ
dρ

+ σρ − σθ +mρ2 = 0,

ρ
dσθ
dρ

+ σθ − σρ + νmρ2 + E
(
ρ
dε∗θ
dρ

+ ε∗θ − ε∗ρ

)
= 0.

Исключая из этой системы σθ получим уравнение

ρ2
d2σρ
dρ2

+ 3ρ
dσρ
dρ

+ (3 + ν)mρ2 + E
(
ρ
dε∗ρ
dρ

+ ε∗θ − ε∗ρ

)
= 0, (5)

или, учитывая формулы (2), (4) дифференциальное уравнение второго порядка
для определения перемещений

ρ
d2u

dρ2
+
du

dρ
− u

ρ
+

1− ν2

E
mρ2 − ρ

d

dρ

(
ε∗ρ + νε∗θ

)
+ (1− ν)

(
ε∗θ − ε∗ρ

)
= 0.
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Если в начальном состоянии (до момента нагружения) в диске необратимые
деформации равны нулю, то компоненты тензора напряжений и вектора пере-
мещений в упругой области диска определяются по формулам [20]

σρ = A− B

ρ2
− 3 + ν

8
mρ2,

σθ = A+
B

ρ2
− 1 + 3ν

8
mρ2, (6)

Eu = (1− ν)Aρ+
1 + ν

ρ
B − 1− ν2

8
mρ3.

Если весь диск находится в упругом состоянии, то для условий

σρ|ρ=0 = σθ|ρ=0,

σρ|ρ=b = 0,

на основании формул (6) получаем

σρ =
3 + ν

8
m(b2 − ρ2),

σθ =
3 + ν

8
m
(
b2 − 1 + 3ν

3 + ν
ρ2
)
, (7)

Eu = (1− ν)
(3 + ν

8
b2 − 1 + ν2

8
ρ2
)
mρ.

Обычно в центре диска указывают условие u|ρ=0 = 0. Условие σρ|ρ=0 = σθ|ρ=0

является следствием симметрии поля напряжений в центре диска.
Если для всех условий пластичности выбран предел пластичности на одно-

осное растяжение k, то при увеличении нагрузки пластическая область зарож-
дается в центре диска когда

σρ|ρ=0 = σθ|ρ=0 = k. (8)

Из (6), (8) находим условие зарождения пластической области в центре диска

m = m0 =
8

b2
k + pb
3 + ν

.

На основании формул (7) можно определить зависимость

σθ =
1 + 3ν

3 + ν
σρ +

1− ν

4
mb2. (9)

Из (9) следует, что годограф вектора напряжений σ̄ = {σρ(ρ), σθ(ρ)} на плоско-
сти σz = 0 в пространстве напряжений – отрезок прямой.

На рис.1 показано положение годографа вектора напряжений для m < m0 и
m = m0 относительно кривых пластичности Треска, Мизеса, Ишлинского , на
плоскости σz = 0 в пространстве главных напряжений, когда ν = 0.2, k = 1, b =
1, 0 ≤ ρ ≤ b.

Итак, при увеличении нагрузки (параметра m) пластическая область зарож-
дается в центре сплошного диска.
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а)m=0.5m0 б)m=m0

Рис. 1

Кусочно-линейные функции пластичности
При выборе кусочно-линейной функции пластичности рассмотрим регуляр-

ные и сингулярные режимы. Для любого регулярного режима имеем статически
определимую задачу (i - номер стороны многоугольника пластичности)

dσρ
dρ

+
σρ − σθ

ρ
= −mρ, (10)

Fi = αiσθ + βiσρ = k.

Решение системы (10) можно записать в виде

σρ =
k

αi + βi
− αi

3αi + βi
mρ2 + Cρ−1−βi/αi ,

σθ =
k

αi + βi
+

βi
3αi + βi

mρ2 − βi
αi

Cρ−1−βi/αi .

Для сингулярного режима

Fi = αiσθ + βiσρ = k, Fi+1 = αi+1σθ + βi+1σρ = k, (11)

задача определения напряжений является статически переопределенной, что
приводит к дополнительным соотношениям между параметрами модели. Из
системы (11) находим, что

σθ = σ
(i)
θ =

βi − βi+1

βiαi+1 − βi+1αi

k, (12)

σρ = σ(i)
ρ =

αi+1 − αi

βiαi+1 − βi+1αi

k.

Подставляя (12) в уравнение равновесия, получаем

σ
(i)
θ − σ(i)

ρ =
αi − αi+1 + βi − βi+1

βiαi+1 − βi+1αi

k = mρ2. (13)
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Из (13) следует формула, определяющая взаимно однозначное соответствие
между радиальной координатой точек диска и значением параметра m

ρ = ρi =

√
αi − αi+1 + βi − βi+1

βiαi+1 − βi+1αi

k

m
. (14)

Из формулы (14) следует, что радиус границы ρ = ρi уменьшается при увеличе-
нии значения параметра m. Будет происходить изменение положения границы
между областями с разными регулярными режимами. Таким образом, в рамках
теории пластического течения в области перемещения границы ρ = ρi необхо-
димо учитывать изменение пластических деформаций.

Для регулярных режимов из соотношения ассоциированного закона пласти-
ческого течения следуют пропорции

dεpρ
∂F/∂σρ

=
dεpθ

∂F/∂σθ
=

dεpz
∂F/∂σz

. (15)

В силу линейной зависимости пластического потенциала от компонент тензо-
ра напряжений, интегрируя (15) переходим к соотношениям ассоциированного
закона пластического деформирования [22]

∆εpρ
∂F/∂σρ

=
∆εpθ

∂F/∂σθ
=

∆εpz
∂F/∂σz

,

где ∆εpρ,∆ε
p
θ,∆ε

p
z - приращения пластических деформаций на каждом этапе на-

гружения. Для рассматриваемых регулярных режимов в процессе нагружения
направляющий тензор пластических деформаций не зависит от времени [23].

Условие пластичности Ишлинского
При рассматрении вопросов, связанных с описанием пластического состояния

тел в работе [14] дано обоснование введения условия пластичности максималь-
ного приведенного напряжения. В частности показано, что все поверхности пла-
стичности идеально пластического тела, когда выбирается предел пластично-
сти на одноосное растяжение-сжатие, буду располагаться между поверхностью
пластичности максимального касательного и максимального приведенного на-
пряжения.

В пластической области один режим условия Ишлинского
Рассмотрим случай, когда выбирается условие пластичности Ишлинского и

выполняется только один режим

σρ + σθ = 2k. (16)

Учитывая, что в центре диска выполняется условие (8), решая систему урав-
нений (1),(16) находим

σρ = k − mρ2

4
, σθ = k +

mρ2

4
. (17)
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Упругие деформации определяются согласно соотношениям закона Гука

Eεeρ = (1− ν)k − 1 + ν

4
mρ2, Eεeθ = (1− ν)k +

1 + ν

4
mρ2. (18)

Из соотношений ассоциированного закона пластического деформирования и
формул Коши, получаем дифференциальное уравнение для определения пере-
мещений в пластической области

dEu

dρ
− Eu

ρ
+

1 + ν

2
mρ2 = 0. (19)

Решая уравнение (19), находим

Eu =
(
C − 1 + ν

4
mρ2

)
ρ. (20)

Из условия равенства нулю пластических деформаций на упругопластической
границе следует, что

C =
1 + ν

4
mc2 + (1− ν)k. (21)

Учитывая (21), формула (20) примет вид

Eu =
(1 + ν

2
m(2c2 − ρ2) + (1− ν)k

)
ρ.

Пластические деформации

Eεpρ = Eεpθ =
1 + ν

2
m(c2 − ρ2), εpz = −2εpθ.

На упругопластической границе ρ = c из (19) следует, что

σρ|ρ=c = k − mc2

4
, σθ|ρ=c = k +

mc2

4
.

Учитывая условия непрерывности напряжений на упругопластической гра-
нице

[σρ]|ρ=c = 0, [σθ]|ρ=c = 0,

определяем величины A,B в формулах (7)

A = k +
1 + ν

4
mc2, B =

1 + ν

8
mc4.

Поэтому напряжения в упругой области

σρ = k +
1 + ν

4

(
1− c2

2ρ2

)
mc2 − 3 + ν

8
mρ2,

σθ = k +
1 + ν

4

(
1 +

c2

2ρ2

)
mc2 − 1 + 3ν

8
mρ2.

Если на границе ρ = b задано условие σρ|ρ=b = −pb, то из него следует, что

c = b

√
1−

√
2

1 + ν

(
4
k + pb
mb2

− 1
)
,
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m =
8(k + pb)b

2

(1 + ν)(b2 − c2)2 + 2b4
.

Когда в пластической области реализуется только режим (16) и на упругопла-
стической границе компоненты тензора напряжений

σρ|ρ=c =
2k

3
, σθ|ρ=c =

4k

3
, (22)

то из условия σρ|ρ=b = −pb определяем

m = m1 =
4

3b2
3pb + (4 + ν)k +

√
(13 + 4ν)k2 + 6(4 + ν)kpb + 9p2b

3 + ν
.

При выполнении (22), учитывая формулы (17) находим, что

mc2 =
4k

3
.

Поэтому значение радиуса упругопластической границы, когда m = m1 будет
определяться по формуле

c = c1 = b

√
(3 + ν)k

(4 + ν)k + 3pb +
√

(13 + 4ν)k2 + 6(4 + ν)kpb + 9p2b
.

Если pb = 0, то

m = m1 =
4k

3b2
4 + ν +

√
13 + 4ν

3 + ν
.

c = c1 = b

√
3 + ν

4 + ν +
√
13 + 4ν

.

На рис.2 показаны графики напряжений, перемещений, пластических де-
формаций и годографа вектора напряжений когда k = 1, b = 1, ν = 0.25,
m = m1 = 3.2786.

Рис. 2
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В пластической области реализуются три режима условия Ишлин-
ского

Рассмотрим случай, когда m > m1 и pb = 0. В пластической области 0 ≤ ρ ≤ c
реализуются три режима. Первый режим

1)

{
σθ + σρ = 2k,
2k
3
≤ σρ ≤ 4k

3

реализуется в области 0 ≤ ρ ≤ c1. Второй режим

2)

{
2σθ − σρ = 2k,
−2k

3
≤ σρ ≤ 2k

3

реализуется в области c1 ≤ ρ ≤ c. Третий режим

3)

{
σθ + σρ = 2k,
2σθ − σρ = 2k

выполняется только на границе ρ = c1.
Первый режим
Для этого режима справедливы соотношения (17) – (20). На границе ρ = c1

mc21 =
4k

3
.

Поэтому на границе ρ = c1, учитывая (20), получаем

Eu|ρ=c1 =
(
C − 1 + ν

3
k
)
c1. (23)

Неизвестная величина C определяется, например, из условия непрерывности
перемещений на границе ρ = c1.

Второй режим
Для второго режима учитывая, что на границе ρ = c1

σρ|ρ=c1 =
2k

3
,

напряжения в пластической области c1 ≤ ρ ≤ c

σρ = 2
(
k − mρ2

5
+

3mc21 − 10k

15

√
c1√
ρ

)
, (24)

σθ = 2k − mρ2

5
+

3mc21 − 10k

15

√
c1√
ρ
.

Упругие деформации определяются согласно соотношениям закона Гука

Eεeρ = 2(1− ν)k +
2− ν

5

(3mc21 − 10k

3

√
c1√
ρ
−mρ2

)
,

Eεeθ = 2(1− ν)k +
1− 2ν

5

(3mc21 − 10k

3

√
c1√
ρ
−mρ2

)
.
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Учитывая соотношения ассоциированного закона пластического деформирова-
ния и формулы Коши, получаем уравнение для перемещений в пластической
области

2
dEu

dρ
+
Eu

ρ
+

5− 4ν

ρ1/2

(ρ5/2 − c
5/2
1

5
m+

2c
1/2
1

3
k
)
− 6(1− ν)k = 0.

Решение этого уравнения представим в виде

Eu = 2(1− ν)kρ+ (5− 4ν)
( c1/21

ρ1/2

(mc21
10

− k

3

)
− mρ2

35

)
ρ+

C1

ρ1/2
. (25)

Полные деформации находим по формулам Коши

Eερ = 2(1− ν)k + (5− 4ν)
( c1/21

2ρ1/2

(mc21
10

− k

3

)
− 3mρ2

35

)
− C1

2ρ3/2
,

Eεθ = 2(1− ν)k + (5− 4ν)
( c1/21

ρ1/2

(mc21
10

− k

3

)
− mρ2

35

)
+

C1

2ρ3/2
.

Пластические деформации

Eεpρ =
c
1/2
1 k

2ρ1/2
−
(1− 5ν

7
ρ2 +

3c
5/2
1

4ρ1/2

)m
5
− C1

2ρ3/2
, (26)

Eεpθ = −c
1/2
1 k

2ρ1/2
+
(
2
1− 5ν

7
ρ2 +

3c
5/2
1

2ρ1/2

)m
5
+

C1

2ρ3/2
.

Из условия равенства нулю пластических деформаций на упругопластической
границе ρ = c находим

C1 = c
1/2
1 ck −

(
2
1− 5ν

35
c5/2 +

3c
5/2
1

10

)
mc. (27)

Подстановка (27) в (25) дает

Eu = (5−4ν)
( c1/21

ρ1/2

(mc21
10

−k
3

)
−mρ

2

35

)
ρ+2(1−ν)kρ−

(
2
1− 5ν

35
c5/2+

3c
5/2
1

10

) mc
ρ1/2

+
c
1/2
1

ρ1/2
ck.

На границе ρ = c1

Eu|ρ=c1 = (5−4ν)
(mc21

14
− k

3

)
c1+2(1−ν)kc1−

(
2
1− 5ν

35

c5/2

c
1/2
1

+
3c21
10

)
mc+ ck. (28)

Из условия непрерывности перемещений на границе ρ = c1 , учитывая (25),
(28), находим

C =

(
1− 2ν

3
+

c

c1

)
k +

(
17− ν

28
c21 −

3c1c

10
− 2

1− 5ν

35

c7/2

c
3/2
1

)
m.

Упругая область
На упругопластической границе ρ = c из (24) следует, что

σρ|ρ=c = 2
(
k − mc2

5
+

3mc21 − 10k

15

√
c1√
c

)
,
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σθ|ρ=c = 2k − mc2

5
+

3mc21 − 10k

15

√
c1√
c
.

Учитывая условия непрерывности напряжений на упругопластической гра-
нице

[σρ]|ρ=c = 0, [σθ]|ρ=c = 0

определяем величины A,B входящие в формулы (6) для определения напряже-
ний в упругой области

A = 2k +
3mc1 − 10k

10

c
1/2
1

c1/2
+

5ν − 1

20
mc2,

B =
((k

3
− mc21

10

)c1/21

c1/2
+

5ν − 1

40
mc2

)
c2.

На границе ρ = b

σρ|ρ=b = 2k+

(
5ν − 1

10

(
1− c2

2b2

)
c2+

(
3+

c2

b2

)
c
5/2
1

5c1/2
− 3 + ν

4
b2
)
m

2
−
(
1+

c2

3b2

)
c
1/2
1

c1/2
k.

Из условия σρ|ρ=b = 0 численно находим радиус упругопластической границы.
Третий режим
Третий режим реализуется только на границе ρ = c1, где

σρ =
2k

3
, σθ =

4k

3
.

На рис. 3 показаны графики напряжений, перемещений пластических дефор-
маций и годографа напряжений, когда k = 1, b = 1,m = 3.4036, c1 = 0.6259, c =
0.87020, ν = 0.25.

Рис. 3

Предельное состояние диска
Рассмотрим случай, когда диск находится в предельном состоянии. Весь диск

находится в пластическом состоянии, но пластического течения нет; пластиче-
ские деформации на внешнем контуре диска ρ = b равны нулю. В области
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0 ≤ ρ ≤ c1 реализуется режим 1, в области c1 ≤ ρ ≤ b выполняется режим 2.
Если pb = 0, то в области c1 ≤ ρ ≤ b напряжения

σρ =
2

5

(
b5/2

ρ1/2
− ρ2

)
m+ 2

(
1− b1/2

ρ1/2

)
k,

σθ =
1

5

(
b5/2

ρ1/2
− ρ2

)
m+

(
2− b1/2

ρ1/2

)
k.

упругие деформации

Eεeρ =
2− ν

5

(
b5/2

ρ1/2
− ρ2

)
m+ 2(1− ν)k − (2− ν)

b1/2

ρ1/2
k,

Eεeθ =
1− 2ν

5

(
b5/2

ρ1/2
− ρ2

)
m+ 2(1− ν)k − (1− 2ν)

b1/2

ρ1/2
k.

Из соотношений ассоциированного закона пластического деформирования, учи-
тывая связь полных упругих и пластических напряжений и соотношений закона
Гука получаем уравнение

2
dEu

dρ
+
Eu

ρ
+

5− 4ν

5

(
ρ2 − b5/2

ρ1/2

)
m+ (5− 4ν)

b1/2

ρ1/2
k − 6(1− ν)k = 0.

Решая это уравнение получим

Eu =
5− 4ν

10

(
b5/2ρ1/2 − 2

7
ρ3
)
m+

(
2(1− ν)ρ− 3

2
b1/2ρ1/2

)
k +

C1

ρ1/2
= 0.

Из равенства пластических деформаций на границе ρ = b находим

C1 =
5− 4ν

14
(7k − b2m)b3/2.

На рис. 4 показаны графики напряжений, перемещений, пластических де-
формаций и годографа напряжений, когда m = 3.4196, c = b, ν = 0.25.

Рис. 4
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Изменение нагрузки
При рассмотрении комбинированной нагрузки можно говорить об изменении

нагрузки в целом, уточняя увеличение или уменьшении каждого параметра
нагрузки в отдельности. В пространстве параметров нагрузки можно рассам-
тривать траекторию изменения нагрузки. В данной статье определяется один
параметр нагрузки - m. При изменении упругопластического состояния диска,
обусловленного уменьшением значения параметра m, в общем случае, в разных
точках пластической области может происходить как разгрузка (уменьшение
значения эквивалентного напряжения) так и нагружение, которое может при-
вести к повторному пластическому деформированию, а следовательно к изме-
нению значения начальных необратимых (пластических) деформаций. После
снятия нагрузки (m = 0) в диске остаются и упругие и пластические деформа-
ции.

Рассмотрим процесс, когда значение параметра m уменьшается от m2 – зна-
чение, при котором диск находится в предельном состоянии, до нуля. При
этом контролируем изменение значения эквивалентного напряжения. В момент
уменьшения значения параметра m весь диск переходит в упругое состояние. В
области 0 ≤ ρ ≤ c1 остаются необратимые деформации εpρ, ε

p
θ, ε

p
z, вычисляемые

по формулам (26), в которых надо полагать

m = m2.

В области 0 ≤ ρ ≤ c1 полные деформации

ερ = εeρ + εpρ,

εθ = εeθ + εpθ, (29)

εz = εez + εpz,

должны удовлетворять условиям совместности. Из уравнения равновесия сле-
дует, что

σθ = ρ
dσρ
dρ

+ σρ +mρ2. (30)

Учитывая соотношения закона Гука, равенство(30), подставляя (29) в (3), при-
ходим к уравнению

ρ2
d2σρ
dρ2

+ 3ρ
dσρ
dρ

+ (3 + ν)mρ2 − ρ
dσ

(0)
θ

dρ
− σ

(0)
θ + σ(0)

ρ − νm2ρ
2 = 0. (31)

Решая уравнение (31) и учитывая (30), находим

σρ = C1 −
C2

ρ2
+

1 + ν

8
m1ρ

2 − 3 + ν

8
mρ2,

σθ = C1 +
C2

ρ2
+ 3

1 + ν

8
m1ρ

2 − 1− 3ν

8
mρ2.

Неизвестная величина C2 = 0.
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В области c ≤ ρ ≤ b напряжения и перемещения определяются по формулам
(6). Из условия σρ|ρ=b = 0 получаем, что

A =
3 + ν

8
mb2 +

B

b2
.

Величины A,C1 определяются из условия непрерывности напряжений на гра-
нице ρ = c.

На рис.5, рис.6 приведены графики годографа вектора напряжений, переме-
щений и полных остаточных деформаций, включающие пластические и оста-
точные упругие деформации, для ν = 0.25, n = 500, при уменьшении значения
параметра нагрузки.

Рис. 5. m=0.95.

Рис. 6. m=0.

Изменения эквивалентного напряжения показывает, что при уменьшении па-
раметра m до нуля в диске не происходит повторного пластического деформи-
рования.
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Гладкие функции пластичности
Рассмотрим случай, когда функция пластичности является гладкой. Выбор

конкретной функции пластичности не имеет принципиального значения. В ра-
боте [15] была предложена степенная функция пластичности

F =

(
(2σ1 − σ2 − σ3)

2n + (2σ2 − σ3 − σ1)
2n + (2σ3 − σ1 − σ2)

2n

2 + 22n

)1/2n

= k. (32)

При n = 1 условие (32) переходит в условие пластичности Мизеса [24], при
n→ ∞ условие (32) переходит в условие пластичности Ишлинского.

Для задачи о диске

F (σρ, σθ, σz)|σz=0 = f(σρ, σθ) =

(
(2σρ − σθ)

2n + (2σθ − σρ)
2n + (σρ + σθ)

2n

2 + 22n

)1/2n

= k.

Связь пластических деформаций и напряжений устанавливает ассоциирован-
ным законом пластического деформирования. Из этого закона следуют пропор-
ции

εpρ
∂F/∂σρ|σz=0

=
εpθ

∂F/∂σθ|σz=0

=
εpz

∂F/∂σz|σz=0

. (33)

Функция пластичности в (32) зависит только от второго и третьего инвариантов
девиатора напряжений. Поэтому осредненную по толщине диска осевую ком-
поненту тензора пластических деформаций можно непосредственно определять
из условия пластической несжимаемости

εpz = −(εpρ + εpθ).

Ассоциированный закон пластического деформирования, в общем случае, не
является следствием ассоциированного закона пластического течения. Также
(33) отличается от варианта деформационной теории при рассмотрении гладких
поверхностей нагружения в [23].

Напряжения в пластической области 0 ≤ ρ ≤ c определяем из системы
dσρ
dρ

+
σρ − σθ

ρ
= −mρ, F = k. (34)

Решение (34) находим численно с учетом условий (8).
Напряжения и перемещения в упругой области определяются согласно (5).

Неизвестные величины A,B в (5) и радиус упругопластической границы ρ =
c определяем из условий непрерывности напряжений на упругопластической
границе и граничного условия на внешнем контуре диска ρ = c

σρ|ρ=b = −pb.
Из ассоциированного закона пластического деформирования, учитывая соотно-
шения (21), соотношения закона Гука и формулы Коши, следует уравнение для
определения радиальной компоненты вектора перемещений

dEu

dρ
− σρ + νσθ −

∂F/∂σρ|σz=0

∂F/∂σθ|σz=0

(
Eu

ρ
− σθ + νσρ

)
= 0.
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Для изотропного тела функции пластичности является симметрической отно-
сительно главных компонент тензора напряжений [19, 25]. Поскольку в центре
диска

σρ|ρ=0 = σθ|ρ=0

то
lim
ρ→0

∂F/∂σρ|σz=0 = lim
ρ→0

∂F/∂σθ|σz=0.

Для гладких функций пластичности в центре диска радиальная деформация
ερ =

du
dρ

принимает конечное значение. Поскольку в центре диска u|ρ=0, то в ма-
лой окрестности точки ρ = 0 (ρ ≤ δ) приближенно можно полагать u = µρ [4]. В
зависимости от выбранного алгоритма решения задачи величину µ определяем,
например, из условия непрерывности перемещений на упругопластической гра-
нице или из других граничных условий. При выполнении численных расчетов
принималось, что δ = 10−10.

Из сравнения рис.7 и рис.8 видно, что вблизи границы ρ = c1, на которой
для условия максимального приведенного напряжений реализуется сингуляр-
ный режим, при увеличении значения параметра n происходит рост градиента
радиальной компоненты тензора пластических деформаций.

Рис. 7. n=30, m=3.4177.

Рис. 8. n=500, m=3.4177.
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Учет пластической сжимаемости
Влияние первого инварианта тензора напряжений на пластическое состоя-

ние диска рассматривалось, например, в [8]. Для изотропного идеально пласти-
ческого тела функция пластичности является функцией инвариантов тензора
напряжений [17, 21, 24]. Когда функция пластичности не зависит от первого
инварианта тензора напряжений, тогда из ассоциированного закона следует,
что след тензора пластических деформаций равен нулю [17, 24]. В этом случае
функцию пластичности можно представить в виде функции главных значений
девиатора напряжений или второго и третьего инвариантов девиатора напряже-
ний. Наиболее известными условиями пластичности, не зависящими от первого
инварианта тензора напряжений и определяющие выпуклые поверхности пла-
стичности, является условие Треска [24], Ишлинского [14], Мизеса [25], Поля
[26], Карафиллиса-Бойса [15] и их комбинации.

Рассмотрим вариант, когда в функцию пластичности Карафиллиса-Бойса [15]
аддитивно добавлен первый инвариант тензора напряжений

F =

(
(2σ1 − σ2 − σ3)

2n + (2σ2 − σ3 − σ1)
2n + (2σ3 − σ1 − σ2)

2n

2 + 22n

)1/2n

+α(σ1 + σ2 + σ3) = (1 + α)k.

В данном случае согласно ассоциированному закону пластического деформи-
рования имеем

εpρ
∂F/∂σρ|σz=0

=
εpθ

∂F/∂σθ|σz=0

=
εpz

∂F/∂σz|σz=0

. (36)

Поэтому осредненная осевая пластическая деформация определяется из про-
порций (36)

εpz =
∂F/∂σz|σz=0

∂F/∂σρ|σz=0

εpρ =
∂F/∂σz|σz=0

∂F/∂σθ|σz=0

εpθ.

На рис.9 показаны графики, годографа напряжений, напряжений, пластиче-
ских деформаций и средней пластической деформации ε = (εpρ + εpθ + εpz)/3.

Рис. 9. n = 6, α = 0.05,m = 3.1984, c = 0.79.
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Заключение
Переход от трехмерной модели к обобщенному плоскому напряженному со-

стоянию, когда рассматриваются осредненные по толщине диска параметры
математической модели, при учете пластической сжимаемости, позволяет опре-
делить компоненту осевой пластической деформации из осредненных соотноше-
ний ассоциированного закона пластического течения или пластического дефор-
мирования.

Алгоритм решения задачи о тонком быстровращающемся диске в рамках тео-
рии малых деформаций, рассмотренный в данной работе, позволяет выбирать
любые функции пластичности. В качестве примера рассматривались условия
пластичности максимального приведенного напряжения, условие пластичности
Карафиллиса-Бойса и его модификация для учета пластической сжимаемости.

Полученные результаты показывают, что в зависимости от значения пара-
метра нагрузки m, в пластической области выполняться один или три режи-
ма условия пластичности максимального приведенного напряжения. При этом
сингулярный режим не будет выполняться в некоторой 2D области, а реализу-
ется только на границе перехода от одного регулярного режима к другому. При
увеличении значения параметра нагрузки m, когда в пластической области ре-
ализуются сингулярный режим, образуется область повторного пластического
деформирования и в рамках теории пластического течения при интегрировании
соотношений ассоциированного закона, необходимо это учитывать.

В рамках деформационной теории пластического деформирования получаем
аналитическое решение задачи. При этом алгоритм решения задачи требует
рассмотрение каждого режима в отдельности с учетом сопряжения значения
искомых величин на границе перехода к другому режиму, что делает алгоритм
решения задачи несколько громоздким.

Если с диска, находящегося в предельном состоянии полностью снять нагруз-
ку, то он полностью переходит в упругое состояние, то есть не возникает зоны
повторного пластического деформирования.

При выборе гладкой функции пластичности задача в пластической области
решается численно. Увеличение значения параметра n в условии пластичности
Карафиллиса-Бойса позволяет получить кривую пластичности, которая с необ-
ходимой точностью позволяет аппроксимировать шестиугольник Ишлинского.
При этом будет выполняться непрерывность радиальных пластических дефор-
маций. Также, при увеличении, в условии пластичности Карафиллиса-Бойса
значения параметра n, в окрестности линии выполнения сингулярного режима
условия Ишлинского, появляется область сильного изменения радиальной ком-
поненты тензора пластических деформаций. При n→ ∞ кривая пластичности
Карафиллиса-Бойса совпадает с шестиугольником пластичности Ишлинского;
при выборе ассоциированного закона пластического деформирования в пласти-
ческой области появляется линия разрыва значений радиальной компоненты
тензора пластических деформаций.
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