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Аннотация. Работа посвящена исследованию формирования и распространения фронта про-
дольной и поперечно-сдвиговой трещины при взаимодействии с жесткой границей. Предла-
гается концепция моделирования, согласно которой передняя кромка трещины представле-
на распространяющейся ортогональным образом относительно фронта основной продольной
волны пластического нагружения областью, где наблюдаются высокие градиенты скоростей
и напряжений. Изучена зависимость интенсивности вторичных трещин простого сдвига и
отрыва от угла падения первичной трещины, а также физико-механических характеристик
материала. В результате исследования выявлены конкретные условия, при которых отраже-
ние отсутствует, что способствует формированию иных видов трещин, отличных от исходных
продольных и поперечных сдвигов.
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AND TRANSVERSE SHEAR CRACKS WHEN THE LEADING

EDGE OF A LONGITUDINAL SHEAR CRACK REFLECTS FROM
A RIGID BOUNDARY
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Abstract. The research focuses on studying the formation and propagation of the fronts of
longitudinal and transversely sheared cracks interacting with a rigid boundary. A novel concept of
modeling is proposed, according to which the leading edge of the crack is represented by a region
characterized by high gradients of velocities and stresses, spreading orthogonally relative to the
main front of the plastic loading wave. The investigation examines the dependency of the intensity
of secondary simple-shear and tensile cracks on the angle of incidence of the initial crack and the
physico-mechanical characteristics of the material. As a result of the study, specific conditions have
been identified under which reflection does not occur, thus facilitating the formation of other types
of cracks distinct from the original longitudinal and transverse shear ones.
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Введение. Физической трещиной в твёрдых телах будем называть поверх-
ность S, ограниченную кривой L – кромкой трещины. Поскольку на поверхно-
сти S возможно возникновение разрывов величин перемещений и напряжений,

введем обозначения сторон
∧
S и

∨
S поверхности S, принадлежащих к двум обла-

стям тела, разделённого данной поверхностью.
Изучение эволюции трещины будем проводить путем анализа роста поверх-

ности S вдоль ее кромки L. На расстоянии от кромки L, существенно превы-
шающем ее линейные размеры, материал будем рассматривать как идеально
упругий. В свою очередь, в непосредственной близости к вершине трещины (в
окрестности кромки L), наблюдается разрушение материала посредством от-
рыва или сдвига, что свидетельствует о неприменимости классической упругой
модели к описанию процесса в вершине трещины [1—3].

В [2] показано, что в вершине трещины в наномасштабе протекают процес-
сы физического и химического взаимодействия частиц материала плёночного
характера. Данные взаимодействия являются причиной необратимого формо-
изменения тела.

В окрестностях вершины трещины статические деформации могут адекват-
но аппроксимироваться моделью пластического течения [1—3]. При переходе к
рассмотрению динамической постановке в первом приближении данный про-
цесс может быть рассмотрен как вязкопластическое течение материала [4, 5] с
учетом влияния скорости деформирования.

Экспериментальные исследования указывают на сложность определения ско-
рости c распространения трещины ввиду сравнительно малых размеров иссле-
дуемых образцов и большим значением самой скорости, соизмеримой со ско-
ростями c1 или c2 распространения продольных Σ1 или сдвиговых Σ2 упругих
волн [3].

Теория конечных деформаций допускает существование поверхности разрыва
полей напряжений и скоростей для математической модели динамического де-
формирования упруговязкопластического материала. Данные поверхности дви-
жутся со скоростями c1 и c2 упругих волн. Указанное допущение может быть
использовано для описания движения передних кромок трещин продольного и
поперечного сдвигов и передних кромок отрыва [6]. Процессы распространения
поверхностей разрывов скоростей и напряжений рассмотрены в ряде работ [7,
8].

Интерес представляют закономерности распространения передних кромок
трещин и их отражения от разного вида границ – жёстко закреплённых или
с другими заданными граничными условиями.

Одной из возможных моделей динамического деформирования материала в
окрестности вершины трещины, учитывающей свойства упругости, пластично-
сти и вязкости, является модель Бингама.

1. Основные закономерности деформирования упруговязкопла-
стического материала на передних кромках трещин. Согласно модели
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упруговязкопластического материала [5—7, 9—11], используемой для описания
поведения материала около вершины растущей трещины, до тех пор, пока дей-
ствующие напряжения ниже предела пластичности Мизеса K, материал ведет
себя исключительно упруго. После превышения указанного предела начинают
возникать дополнительные пластические деформации, сопровождающиеся за-
тухающим эффектом вязкого сопротивления.

σij = λekkδij+2µeij−2µepij; eij = eeij+e
p
ij; epij = evij; ε

p
ij =

∂epij
∂t

=

(
I2 −K

√
2
)
σ

′
ij

I2η
.

(1)
Здесь: eij =

(ui,j+uj,i)

2
- полные деформации по Коши; ui,j = ∂ui

∂xj
;I2 =

(
σ

′
ijσ

′
ij

) 1
2 ,

где σ′
ij = σij − 1

3
σkkδij- девиаторные компоненты тензора напряжений σij; λ, µ-

упругие параметры Ламе; η – коэффициент вязкости.
Реологические соотношения, представленные системой уравнений (1), вклю-

чающую в себя линейные уравнения в частных производных и полулинейные
уравнения для скоростей пластических деформаций εpij =

∂epij
∂t

. Критерий начала
пластических процессов определяется условием пластичности Мизеса, которое
выражено следующим образом:

εpij = 0, если σp
ijσ

p
ij − 2K2 < 0; εpij ̸= 0, если σp

ijσ
p
ij − 2K2 ≥ 0. (2)

Модель динамических деформаций упруговязкопластичного материала в об-
ласти передней кромки трещины отрыва представлена полным набором урав-
нений, число которых строго соответствует количеству неизвестных функций,
необходимых для полного описания напряженно-деформированного состояния.
Основой данной модели служат реологические уравнения, устанавливающие
связь между механическими характеристиками материала и действующими
внешними силами, дополненные уравнениями движения, выраженными через
напряжения.

ρ
∂2ui
∂t2

=
∂σij
∂xj

+ bi; где bi −− массовые силы (3)

и уравнением неразрывности ρ = ρ0 = const где ρ – плотность среды.
Рассмотрим систему уравнений (1)-(3), содержащую частные производные

по x и времени t, на переднем фронте пластического предвестника трещины
Σδ. Для этого преобразуем данную систему, записав её в подвижной системе
координат, где y – криволинейные координаты в локальной подвижной системе
координат,

∂f

∂xi
=
∂f

∂n
ni + gαβ

∂xi
∂yβ

· ∂f
∂yα

,
∂f

∂t
=
δf

δt
− c

∂f

∂n
, (i = 1, 2, 3; α, β = 1, 2) . (4)

Здесь δf
δt

– локальная производная по времени t от функции, заданной на
подвижной поверхности Σ; gαβ = ∂xi

∂yα
· ∂xi

∂yβ
– метрический тензор.
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Реологические уравнения (1) и уравнения движения (3), записанные в по-
движной системе координат, связанной с подвижной передней кромкой трещи-
ны, принимают вид

σij = λekkδij + 2µ
(
eij − epij

)
,

εpij =
∂epij
∂t

=
δepij
δt

− c
∂epij
∂n

= I2−K
√
2

I2η
σ′
ij,

eij =
1
2

(
∂ui

∂n
nj +

∂uj

∂n
ni + gαβ

∂xj

∂yβ

∂ui

∂yα
+ gαβ ∂xi

∂yβ

∂uj

∂yα

)
,

vi =
∂ui

∂t
= δui

δt
− c∂ui

∂n
,

ρ∂vi
∂t

= ρ δvi
δt

− c∂vi
∂n

=
∂σij

∂n
nj + gαβ ∂xi

∂yβ

∂σij

∂yα
+ bi.

(5)

Здесь использована связь полной и локальной производных на переднем
фронте трещины.

Представление решений для скоростей и напряжений в виде степенного ряда
с разрывом первого рода при n = 0

f (n, y1, y2, t) = Σ
1

l!
· ∂

lf (0, y1, y2, t)

∂nl
nl. (6)

относится к классу обобщённых функций, не имеющих нормальной производ-
ной в точке разрыва и подчиняющихся дифференциальным законам (5) в ин-
тегральной форме. Последовательно применяя интегрирование уравнений (5)
по n на отрезке от −ε до +ε и переходя к пределу при ε → 0 [12], получим
следующие уравнения:

−ρc [vi] = [σij]nj,
[
epij
]
= 0,

[
∂epij
∂n

]
̸= 0. (7)

Физический смысл второго уравнения в (7) заключается в следующем: пла-
стические деформации epij непрерывны на поверхности Σδ, являющейся пред-
вестником трещины. При этом возникает градиент пластических деформаций:[

epij
]
= 0;

[
∂epij
∂n

]
̸= 0. (8)

Система уравнений (7) в части реологических уравнений и выражений для
деформаций eij и скоростей vi, записанная в терминах разрывах основных ве-
личин на поверхности предвестника Σδ, принимает вид

[σij] = λ [ekk] δij + 2µ
(
[eij]−

[
epij
])

; [vi] =
δ[ui]
δt

− c
[
∂ui

∂n

]
;

[eij] =
1
2

(
[ui,j] + [uj,i] + gαβxj,β

[
∂ui

∂yα

]
+ gαβxi,β

[
∂uj

∂yα

])
.

(9)

Нетрудно видеть, что система уравнений (7)-(9) является однородной систе-
мой линейных алгебраических уравнений. Неизвестными величинами в ней яв-
ляются скачки скоростей [vi], градиентов перемещений

[
∂ui

∂n

]
, напряжений [σij],

перемещений [ui] и градиентов перемещений
[
∂ui

∂yα

]
вдоль yα.
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Система (5)-(9) может быть дополнена условиями сплошности материала и
непрерывности перемещений вдоль Σδ по yα, которые записываются в форме

δ [ui]

δt
= 0;

[
∂ui
∂yα

]
=
∂ [ui]

∂yα
= 0. (10)

Исключая [σij] , [eij] , [ui,j] из уравнений (7) получаем

ρc2 [vi] = (λ+ µ) [vj]ninj + µ [vi] . (11)

Существует только два отличных от нуля решения для [vi]:

[vi]ni = ωn, при условии ρc21 = λ+ 2µ. (12)

[vi] τi = ωτ , при условии ρc22 = µ. (13)
Решение разрывного типа, характеризуемое наличием резких изменений нор-

мальной составляющей скорости [vn] = ωn на границе движущегося со скоро-
стью c1 фронта Σ1 и тангенциальной составляющей скорости [vτ ] = ωτ на фрон-
те Σ2, перемещающемся со скоростью c2, реализуется исключительно вблизи
краев развивающихся трещин.

Описанный подход учитывает особенности кинематики перемещения частиц
материала в непосредственной близости от областей образования трещин про-
дольного сдвига, отрыва и антиплоской деформации. Благодаря этому удается
уточнить математическую модель, позволяющую описать движение частиц сре-
ды возле кромки трехмерной трещины, используя формализованные понятия
скорости перемещения отдельных элементов вещества.

2. Математическая модель передней кромки трещины. Для иссле-
дования процессов, происходящих вблизи передней кромки L трещины, выде-
лим ее δ – окрестность, имеющую цилиндрическую форму с криволинейной
осью L. Граница Σδ этой области представляет собой поверхность слабых раз-
рывов, возникающих вследствие начальных возмущений при зарождении про-
цесса трещинообразования. Кривую Lδ, расположенную на Σδ, примем за пред-
вестник появления передней трещины.

Пространственная траектория продвижения фронта волны-предвестника ха-
рактеризуется кривой Lδ, лежащей на поверхности Σδ. Символы ∧ и ∨ будут
использоваться для обозначения значений функций выше и ниже следа Lδ тре-
щины соответственно.

Анализ соответствия кинематики движения частиц материала вблизи верши-
ны трещины в перемещениях и кинематики поведения среды вблизи фронтов
продольных и сдвиговых волн в скоростях перемещений позволяет сделать вы-
воды:

(1) Передняя кромка предвестника пространственной трещины L развива-
ется вдоль направления, ортогонального волновой поверхности Σδ с при-
надлежащей ей линией Lδ, характеризующаяся разрывами скоростей и
напряжений.
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• Развитие трещины, вызванной продольным сдвигом, происходит со
скоростью c1, соответствующей скорости распространения продоль-
ных волн в упругом материале.

• Движение фронта трещины, обусловленное антиплоским сдвигом
или отрывом, протекает со скоростью c2, равной скорости сдвиго-
вых волн в среде.

(2) В целях удобства введём характеристику интенсивности передней кром-
ки трещины Lδ, определяемой изменением скорости при прохождении
через границу S.

• В случае трещины продольного сдвига на Σ1 интенсивность рассчи-
тывается следующим образом

ωnL =
(
∧
vn −

∨
vn

)∣∣∣
L
= [vn]L . (14)

• Для трещины антиплоского сдвига на Σ2 справедлива формула

ω2L =
(
∧
vτ2 −

∨
vτ2

)∣∣∣
L
= [vτ2 ]L . (15)

• Для трещины отрыва на Σ2 может быть использовано равенство

ω1L =
(
∧
vτ1 −

∨
vτ1

)∣∣∣
L
= [vτ1 ]L . (16)

Таким образом, классификация типа трещины основывается на типе пред-
вестника Σ1 или Σ2, сам факт существования передней кромки определяет-
ся интенсивностью фронта, обусловленной превышением динамического второ-
го инварианта девиатора тензора напряжений над пределом пластичности K:
σ′
ijσ

′
ij ≥ K2.

Покажем, что интенсивность трещины ωL (14)-(16) определяется интенсив-
ностью соответствующих волн сильного разрыва Σ1 и Σ2

В окрестности предвестника L трещины на Σ имеют место выражения
∧
v = v+ −

[
∧
v
]
;

∨
v = v+ −

[
∨
v
]
;

ωL =
∧
v − ∨

v = −
[
∧
v
]
+
[
∨
v
]
.

Предложим следующую концепцию оценки наличия и развития трещины в
твёрдом теле: трещина возникает и распространяется, если на одной или обеих
сторонах её передней кромки L наблюдается пластическое деформирование ма-
териала. Данный подход предполагает исследование механизма формирования
и эволюции трещин путём подробного изучения напряжённо-деформированного
состояния среды, находящегося за фронтом волн сильного разрыва.

3. Кинематика отражения предельной пластической волны пре-
дельного сдвига от жёсткой границы. Теоретические расчеты наряду с
результатами экспериментальных наблюдений [3] подтверждают, что передние
края трещин, находящиеся на границах волновых фронтов, формируются как
ортогональные траектории распространения самих фронтов. Установлено, что
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скорость продвижения этих краев абсолютно соответствует скоростям распро-
странения продольных или сдвиговых волн в изучаемой среде.

c1 =

√
λ+ 2µ

ρ
, c2 =

√
µ

ρ
. (17)

Процесс распространения передней кромки трещины описывается δ-
окрестностью пластичной зоны, которая создает механизм направленного
распространения трещины перпендикулярно направлению движения фронта
пластического нагружения. Например, для продольно-направленной трещины
предполагается наличие разрывов скорости за фронтом продольной волны, пе-
ресекающей плоскость трещины.

Интенсивность передней кромки трещины оценивается через разницу про-
дольных скоростей, рассчитанных выше и ниже плоскости самой трещины (14).
Скорости за фронтом волны подчиняются фундаментальным законам вязко-
упругопластического деформирования материала (11) и тесно связаны с харак-
тером отражения волновых фронтов от граничных поверхностей объекта. Такая
постановка задачи позволяет выявить точные количественные связи, характер-
ные для каждой отдельной ситуации распространения трещины.

Обозначим области за падающими и отражёнными волнами Σ1, Σ2 как (1), (2)
и (3) [12]. Исходя из условия одновременного присутствия в конкретной точке
пространства трёх взаимодействующих волн Σ1, Σ′

1 и Σ′
2 (штрихом обозначен

фронт отраженной волны), можно заметить, что углы падения и отражения
волн подчиняются закону Снеллиуса:

c1
sinφ

=
c1

sinφ′ =
c2

sinψ′ . (18)

Из этого положения получаем соотношение углов

sinψ′ =
c2
c1

sinφ, φ′ = φ. (19)

Условия совместности для напряжений и скоростей на фронте сильной волны
перед Σ1 имеют вид:

−c1 [σij] = (λδij + 2µninj)ωn, (20)
где ωn – скачок нормальной компоненты скорости на фронте волны и ωn =
[vi]ni.

Условия (12) и (13) подчеркивают важный факт: источником фронта Σδ

предвестника пространственной трещины выступает волна продольной дефор-
мации для трещины продольного сдвига, распространяющаяся со скоростью
c1 (ρc21 = λ+ 2µ), и волна сдвиговой деформации для трещин отрыва или по-
перечного сдвига, распространяющаяся со скоростью c2 (ρc22 = µ).

Связь между скачками напряжений и скачком скорости выражается таким
образом:

[σij] = −1

c
λ [vn] δij −

1

c
µ ([vi]nj + [vj]ni) .
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Наконец, обратимся к рассмотрению траектории движения передней кромки
трещины на фронте Σδ волнового предвестника, которая представляется в виде
пространственной кривой Lδ, расположенной на поверхности Σδ.

Рассмотрим след передней кромки трещины на фронте Σδ волнового пред-
вестника, который представлен пространственной кривой Lδ, принадлежащей
поверхности Σδ.

Скачки скоростей и напряжений на отраженных волнах Σ′
1 и Σ′

2связаны со-
отношениями

−c1 [σij]1 =
(
λδij + 2µn

(1)
i n

(1)
j

)
ω1, [vi]1 = ω1 · n(1)

i . (21)

−c2 [σij]2 = µ
(
τ
(2)
i n

(2)
j + τ

(2)
j n

(2)
i

)
ωτ , [vi]2 = ωττ

(2)
i (22)

Систему уравнений (20)-(22) дополним граничными условиями

v
(3)
i · ni = 0, где v(3)i − скорость материала на границе в зоне (3). (23)

Приведём выражения для компонент векторов n̄, n̄(1), n̄(2), τ̄ (2), N̄ , T̄ :

n̄ = (sinφ, cosφ, 0) ; n̄(1) = (sinφ′,− cosφ′, 0)

n̄(2) = (sinψ′,− cosψ′, 0) ; τ̄ (2) = (cosψ′, sinψ′, 0) ; (24)

N̄ = (0, 1, 0) ; T̄ = (1, 0, 0) .

Введем следующие величины на падающих и отражённых волнах:

[σij]0 = −σ(1)
ij ; [σij]1 = σ

(1)
ij − σ

(2)
ij ; [σij]2 = σ

(2)
ij − σ

(3)
ij . (25)

Из (20)-(22) получим

− [σij]0 =
1

c1
(λδij + 2µninj)ω,

− [σij]1 =
1

c1

(
λδij + 2µn

(1)
i n

(1)
j

)
ω1,− [σij]2 =

1

c2
µ
(
τ
(2)
i n

(2)
j + τ

(2)
j n

(2)
i

)
ωτ . (26)

Для вычисления интенсивности напряжений I(2)2 и I(3)2 определим напряжения
в зонах (2) и (3), исключая скачки напряжений. Из формул (25)-(26) получим
выражение для напряжений в зоне (3)

σ
(1)
ij − σ

(1)
ij + σ

(2)
ij − σ

(2)
ij + σ

(3)
ij = 1

c1
(λδij + 2µninj)ω+

+ 1
c1

(
λδij + 2µn

(1)
i n

(1)
j

)
ω1 +

µ
c2

(
τ
(2)
i n

(2)
j + τ

(2)
j n

(2)
i

)
ωτ .

(27)

Учитывая соотношения (26)-(27), из формулы (25) получим

σ
(2)
ij = σ

(3)
ij + [σij]2 =

1
c1
(λδij + 2µninj)ω+

+ 1
c1

(
λδij + 2µn

(1)
i n

(1)
j

)
ω1 +

µ
c2

(
τ
(2)
i n

(2)
j + τ

(2)
j n

(2)
i

)
ωτ − µ

c2

(
τ
(2)
i n

(2)
j + τ

(2)
j n

(2)
i

)
ωτ =

= 1
c1
(λδij + 2µninj)ω + 1

c1

(
λδij + 2µn

(1)
i n

(1
j

)
ω1.
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Принимая во внимание, что на предельной продольной пластической волне
ω =

√
3K
2µ

и, вводя обозначение c̃ = c22
c21

, получим выражение для ω через c̃

ω2 =
K2

ρ2c̃c21
(
10
3
c̃− 1

) . (28)

Граничные условия отсутствия скорости v(3)i = 0 на отражающей границе поз-
воляют определить скачки скоростей на отражённых продольной и сдвиговой
волнах. На отражённых волнах при условии v(3)i = 0 имеем:

[vi]
′ = v

(1)
i − v

(2)
i = ω′

nn
′
i,

[vi]
′′ = v

(2)
i − v

(3)
i = ω′′

τ τ
′′
i .

(29)

Складывая последние два уравнения, получим одно векторное уравнение

ω′
nn

′
i + ω′′

τ τ
′′
i = v

(1)
i = −ωni. (30)

В проекции на нормаль отражённой продольной волны n′
i и на касательное

направление τ ′′i система уравнений (30) представляет собой систему двух линей-
ных алгебраических уравнений для скачков отражённых волн ω′

n и ω′′
τ , которая

получается путём умножения уравнения (30) на n′
i и τ ′′i .

1)ω′
n + ω′′

τ τ
′′
i n

′
i = −ωnin

′
i;

2)ω′
nn

′
iτ

′′
i + ω′′

τ = −ωniτ
′′
i .

(31)

Решение для скачка ω′
n скорости на отражённой продольной волне получим,

если первое уравнение системы (31) умножить на свёртку n′
kτ

′′
k и сложить его

со вторым уравнением. А решение для скачка ω′′
τ получим, умножив второе

уравнение системы (31) на свёртку n′
kτ

′′
k и сложив его с первым.

ω′
n = −ωnin

′
i − nkτ

′′
kn

′
iτ

′′
i

1− (niτ ′′i )
2 . (32)

ω′′
τ = −ωniτ

′′
i − (nin

′
i)nkτ

′′
k

1− (niτ ′′i )
2 . (33)

Выражения для скачков отражённых волн ω′
n и ω′′

τ удобнее представлять
в безразмерном виде как коэффициенты отражения продольной и сдвиговой
волн. Развёртывая скалярные произведения векторов n, n′, τ ′′ и используя
закон Снелла (19), выражение для безразмерных коэффициентов отражения
продольной и сдвиговой волн примут вид

k̃1 =
ω′
n

ω
=

cos 2φ+ sin2 (1− c̃2)

1− sin2
(
c̃ · cosφ+

√
1− c̃2 sin2 φ

)2 . (34)

k̃2 =
ω′′
τ

ω
=
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=
−
(
sinφ ·

√
1− c̃2 sin2 φ+ c̃ · 1

2
· sin 2φ

)
− cos 2φ ·

(
sinφ

√
1− c̃2 sin2 φ− c̃ · 1

2
· sin 2φ

)
1− sin2

(
c̃ · cosφ+

√
1− c̃2 sin2 φ

)2 .

(35)
На рисунках 1 и 2 представлены 3d-графики коэффициентов отражения как

функции угла падения φ и коэффициента c̃ = t = c2
c1

. Графики отражают факт
увеличения коэффициентов отражения с увеличением угла φ и ростом отноше-
ния c2

c1
скоростей продольной и сдвиговой волн.

Рис. 1. Графическое представление коэффициента k̃1 =
ω′
n
ω .

В случае отражённой волны Σ′
1 от жёсткой границы, интенсивность разрыва

скоростей сдвига определяется выражением

ω
отр
1L =

(
∧
v
−
1 − ∨

v
−
1

)∣∣∣
L
= k̃1

∧
v
+

1 − k̃1
∨
v
+

1 = k̃1

(
∧
v
+

1 − ∨
v
+

1

)
= k̃1ω

пад
1L . (36)

Отметим, что коэффициент отражения k̃1 скачка скорости волны продоль-
ного сдвига совпадает с коэффициентом отражения интенсивности передней
кромки трещины. Тем самым, о величине отражённой передней кромки трещи-
ны можно судить по коэффициенту отражения разрыва скоростей продольной
сдвиговой волны. Те же утверждения имеют место для скачка поперечной ско-
рости на переднем фронте отражённой трещины поперечного сдвига

ω
отр
2L =

(
∧
v
−
1 − ∨

v
−
1

)∣∣∣
L
= k̃2

∧
v
+

1 − k̃2
∨
v
+

1 = k̃2

(
∧
v
+

1 − ∨
v
+

1

)
= k̃2ω

пад
1L . (37)
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Рис. 2. Графическое представление коэффициента k̃2 =
ω′′
τ
ω .

Рис. 3. Графическое представление поведения скорости сдвига за фронтом продоль-
ной волны на передней кромке L волны продольного сдвига.

Таким образом, на рисунках 1, 2 представлены графики отражения скачков
скорости на передних кромках отражённых трещин продольного и поперечно-
го сдвигов. Отражённые передние кромки фронтов продольных и поперечных
волн не всегда являются трещинами, поскольку напряжённое состояние за ними
может быть как упругим, так и пластическим.

4. Условие зарождения отражённых передних кромок трещин
продольного и поперечного сдвигов. Существование отражённых трещин
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продольного и поперечного сдвигов определяется величиной пластического со-
стояния, которое оценивается интенсивностью напряжённого состояния I2 в зо-
нах (2) и (3). При I

(2)
2

2K2 > 1 и I
(3)
2

2K2 > 1 имеет место отражение трещин от жёсткой
границы.

Напряжения в зонах (2) и (3) могут быть представлены и через скачки ско-
ростей:

σ
(2)
ij = σ

(1)
ij − [σij]1 =

1

c1

((
λδij + 2µn′

in
′
j

)
ω′
n − (λδij + 2µninj)ω

)
; (38)

σ
(3)
ij =

1

c1
(λδij + 2µninj)ω +

1

c1

(
λδij + 2µn′

in
′
j

)
ω′
n +

µ

c2

(
τ ′′i n

′′
j + τ ′′j n

′′
i

)
ω′′
τ ; (39)

σ
(2)
kk =

1

c1
(3λ+ 2µ) (ω′

n − ω) ; (40)

σ
(3)
kk =

1

c1
(3λ+ 2µ) (ω + ω′

n) ; (41)

σ′(2)
kk = σ

(2)
ij − 1

3
· 1

c1
(3λ+ 2µ) (ω′

n − ω) δij; (42)

σ′(3)
kk = σ

(3)
ij − 1

3
· 1

c1
(3λ+ 2µ) (ω + ω′

n) δij. (43)

Выражение I(2)2 в зоне (2) представимо в виде функции от φ и от c̃ = c22
c21

:

I
(2)
2 = Kc̃

( 10
3
c̃−1)

{((
cos 2φ+sin2 φ·(1−c̃2)

1−sin2 φ·
(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)2

− 1

)
·

·
(
3c̃2 (1− 2c̃2)

2
+ 2c̃ (1− 2c̃2) + 4

)
−

− 1
3
·
(

cos 2φ+sin2 φ·(1−c̃2)
1−sin2 φ·

(
c̃·cosφ+

√
1−c̃2 sin2 φ

) − 1

)2

· (3c̃ (1− 2c̃2) + 2)
2

} (44)

Выражение I(3)2 в зоне (3) представимо в виде функции от φ и от c̃ = c22
c21

I
(3)
2 =

K
(
4c̃4+3(1−2c̃2)

2
+2c̃2(1−2c̃2)

)
c̃( 10

3
c̃−1)

(
1 +

(
cos 2φ+sin2 φ·(1−c̃2)

1−sin2 φ·
(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)2
)
+

+ 2Kc̃5
10
3
c̃−1

(
− sinφ

(√
1−c̃2 sin2 φ+c̃·cosφ

)
−cos 2φ sinφ

(√
1−c̃2 sin2 φ−c̃·cosφ

)
1−sin2 φ·

(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)2

+

+
K
(
4c̃4 cos2 2φ+3(1−2c̃2)

2
+4c̃2(1−2c̃2)

)
c̃( 10

3
c̃−1)

(
cos 2φ+sin2 φ·(1−c̃2)

1−sin2 φ·
(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)2

+

+ 2Kc̃
10
3
c̃−1

(
− sinφ

(√
1−c̃2 sin2 φ+c̃·cosφ

)
−cos 2φ sinφ

(√
1−c̃2 sin2 φ−c̃·cosφ

)
1−sin2 φ·

(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)
×

×
(
c̃ · cosφ+

√
1− c̃2 sin2 φ

)(
c̃ sin3 φ− 1

2
sin 2φ

√
1− c̃2 sin2 φ

)
×
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+ 2Kc̃
10
3
c̃−1

(
− sinφ

(√
1−c̃2 sin2 φ+c̃·cosφ

)
−cos 2φ sinφ

(√
1−c̃2 sin2 φ−c̃·cosφ

)
1−sin2 φ·

(
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√
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)
)
×

×
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√
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1− c̃2 sin2 φ

)
×

×
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− sinφ
(√

1−c̃2 sin2 φ+c̃·cosφ
)
−cos 2φ sinφ

(√
1−c̃2 sin2 φ−c̃·cosφ

)
1−sin2 φ·

(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)
+

+

(
cos 2φ+sin2 φ·(1−c̃2)

1−sin2 φ·
(
c̃·cosφ+

√
1−c̃2 sin2 φ

)
)2

−
K
(
4c̃4+9(1−2c̃2)

2
+12c̃2(1−2c̃2)

)
3c̃( 10

3
c̃−1)

×

×

1 +

 cos 2φ+ sin2 φ · (1− c̃2)

1− sin2 φ ·
(
c̃ · cosφ+

√
1− c̃2 sin2 φ

)
2 .

На рисунках 4 представлены 3d –графики величины I
(2)
2

2K2 в зоне (2) для раз-
личных интервалов изменения φ и c̃ = t: а) 0, 4 < φ < 0.8 , 0.4 < c̃ = t < 0.7 и
б) 0.4 < φ < 0.5 , 0.4 < c̃ = t < 0.5

а) б)

Рис. 4. а) 0, 4 < φ < 0.8 , 0.4 < c̃ = t < 0.7; б) 0, 4 < φ < 0.5 , 0.4 < c̃ = t < 0.5

На рисунках 5 представлены 3d-графики величины I
(3)
2

2K2 в зоне (3) для раз-
личных интервалов изменения φ и c̃ = t: а) 0, 4 < φ < 0.8 , 0.4 < c̃ = t < 0.7 и
б) 0, 6 < φ < 0.7 , 0.6 < c̃ = t < 0.7

Графические представления величин I
(2)
2

2K2 > 1 и I
(3)
2

2K2 > 1 позволяют выде-
лить интервалы углов падения φ и коэффициента c̃ = c22

c21
, при которых возмож-

но существование отражённых трещин продольного и поперечного сдвигов от
жёсткой границы. В противном случае, когда I

(2)
2

2K2 < 1и I
(3)
2

2K2 < 1, отражённые
трещины продольного и поперечного сдвигов отсутствуют, то есть падающая
волна не всегда порождает отражённые трещины продольного и поперечного
сдвигов.
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а) б)

Рис. 5. а) 0, 4 < φ < 0.8 , 0.4 < c̃ = t < 0.7; б) 0, 6 < φ < 0.7 , 0.6 < c̃ = t < 0.7

Заключение. Кинематические закономерности отражения предельной
пластической волны продольного деформирования Σ1 показывают:

(1) Коэффициенты k̃1 и k̃2 скачков скоростей на передних кромках трещин
возрастают с увеличением угла падения φ трещины продольного сдвига
и с увеличением t = c̃ =

c22
c21

.

(2) Величины вторых инвариантов I(2)2 и I(3)2 девиатора тензора напряжений
в зонах (2) и (3) растут с увеличением угла падения φ.

(3) Зависимость от отношения скоростей продольных и сдвиговых волн t =
c̃ =

c22
c21

является более сложной, так что с увеличением t при некоторых
t = t∗ (t∗ ∈ [t1; t2]) не отражаются трещины продольного и поперечного
сдвигов, но при дальнейшем увеличении t > t2 возможно отражение
трещины продольного и поперечного сдвигов.

(4) Падающая передняя кромка трещины продольного сдвига, следующая
за фронтом падающей волны Σ1, может порождать передние фронты
трещины продольного сдвига, следующие за отражённой продольной
волной и передний фронт трещины отрыва за фронтом отражённой сдви-
говой волны. Это возможно только в случаях возникновения пластиче-
ского деформирования в окрестности передних кромок трещин за фрон-
тами отражённых волн, ограничивающих зоны (2) и (3).
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