
Вестник ЧГПУ им.И.Я. Яковлева. Серия: Механика предельного состояния.

DOI: 10.37972/chgpu.2025.64.2.011 EDN: LJOPZD
Научная статья УДК: 539.3

А.В. Ковалев1, М. М.Коротков1, Н. В.Минаева1, А. И.Шашкин1

АНАЛИЗ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ, ИСПОЛЬЗУЕМЫХ
ПРИ ИССЛЕДОВАНИИ ПРЕДЕЛЬНОГО СОСТОЯНИЯ
УПРУГОЙ НЕОДНОРОДНОЙ ПОЛОСЫ ПРИ СЖАТИИ

1Воронежский государственный университет, Воронеж, Россия

Аннотация. Рассматривается сжатие полосы, выполненной из неоднородного материала и
имеющей неровную поверхность с боковых сторон. Усилия, приложенные по верхней и нижней
сторонам и по боковым кромкам поперечного сечения, считаются независимыми. В качестве
необходимого условия нарушения нормального функционирования полосы предлагается ис-
пользовать критерий непрерывной зависимости функции, характеризующей поведение изу-
чаемого объекта, от исходных данных. Нарушение этой непрерывности способно вызывать
потерю устойчивости (первая группа предельных состояний) или чрезмерные деформации,
отклонения от проектируемых расчетных значений (вторая группа предельных состояний).
Рассмотрены математические модели для исследования непрерывной зависимости с гранич-
ными условиями в деформированном состоянии, а также модель, в которой были учтены
углы поворота в уравнениях равновесия (согласно работам Новожилова, Ивлева). Получено
условие, позволяющее определять область, на границе которой состояние полосы станет пре-
дельным (потеря устойчивости равновесной формы). Достоверность полученных результатов
подтверждается совпадением с известными результатами других авторов. Для различных
значений параметров поперечного сечения построены области, в пределах которых НДС по-
лосы близко к однородному.
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Abstract. We considered compression of a strip made of an inhomogeneous material and having
an uneven surface on the sides. The forces applied on the upper and lower sides and on the lateral
edges of the cross section are considered independent. As a necessary condition for disruption of
the normal functioning of the band, it is proposed to use the criterion of continuous dependence of
the function characterizing the behavior of the studied object on the initial data. A violation of this
continuity can cause loss of stability (the first group of limiting states) or excessive deformations,
deviations from the projected design values (the second group of limiting states). Mathematical
models for studying continuous dependence with boundary conditions in a deformed state are
considered, as well as a model in which rotation angles in equilibrium equations were taken into
account (according to the works of Novozhilov and Ivlev). A condition we obtained that makes it
possible to determine the area at the boundary of which the state of the strip will become marginal
(loss of stability of the equilibrium shape). The reliability of the obtained results is confirmed by
the coincidence with the known results of other authors. For different values of the cross-section
parameters, regions we constructed within which the stress-strain state of the strip is close to
homogeneous.
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Введение. Проблема старения конструктивных элементов приобретает
особую значимость в условиях интенсивной эксплуатации различных инже-
нерных объектов, таких как авиационная техника, транспортные системы и
промышленные сооружения. Под воздействием переменных нагрузок, темпера-
турных изменений и других внешних факторов геометрические и физические
свойства элементов постепенно изменяются в квазистатическом режиме на про-
тяжении их службы. При проектировании предполагается, что напряженно-
деформированное состояние конструкций будет соответствовать установлен-
ным эксплуатационным требованиям и расчетным допускам. Однако несоответ-
ствие этим требованиям может привести элементы к критическому состоянию
[1].

Для обеспечения надежности и безопасности конструкции необходимо, что-
бы изменения характеристик элементов оказывали лишь минимальное влия-
ние на их напряженно-деформированное состояние [2]. Если это условие не со-
блюдается, возможны аварийные ситуации или даже техногенные катастрофы.
Таким образом, ключевым аспектом безопасной эксплуатации конструкций на
этапе математического моделирования является непрерывность решения от на-
чальных параметров [2—4]. Нарушение этой непрерывности способно вызывать
потерю устойчивости (первая группа предельных состояний) или чрезмерные
деформации, отклонения и сбои в работе системы (вторая группа предельных
состояний) [5—7].

В работах [8], [9] показано, что проводить исследование устойчивости равно-
весия упругих тел следует на основе задачи, в которой краевые условия учиты-
вают деформацию граничной поверхности.

В [10] приведено обоснование такого подхода. Согласно полученным результа-
там, при анализе непрерывной зависимости граничные условия в напряжениях
следует ставить на границе тела в деформированном состоянии. В противном
случае задача будет поставлена противоречиво (на границе уже предполагается
непрерывность).

В [11] предлагается ставить общую задачу устойчивости упругого тела в рам-
ках уравнений нелинейной теории упругости. Согласно предложенному подхо-
ду, надо учитывать компоненты вращения в уравнениях равновесия.

В [12], используя эти результаты, было проведено исследование устойчивости
полосы при сжатии. Полученные значения критического давления были ниже
известных ранее [11].

Несмотря на широкий спектр исследований в данной области, разработка
методов анализа предельных состояний, учитывающих особенности упругоне-
линейного деформирования, остается актуальной задачей.

1. Математическая модель НДС неоднородной полосы при
сжатии. Рассмотрим упругую полосу, выполненную из неоднородного несжи-
маемого материала и имеющую неровную поверхность с обеих боковых сторон
поперечного сечения. Его верхняя и нижняя кромки прямолинейные. Вдоль
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этих кромок действует сжимающее усилие py. Отличие боковых кромок от пря-
мых линий x ± ℓ характеризуется функциями qi(y) (i = 1, 2). Они сжимаются
усилиями px.

Напряжённое состояние полосы (плоская деформация) описывается решени-
ем следующей задачи [9], [13]

∂σx
∂x

+
∂τ

∂y
= 0,

∂σy
∂y

+
∂τ

∂x
= 0,

σx − σy = 4G
∂u

∂x
, τ = G

(
∂v

∂x
+
∂u

∂y

)
,

∂u

∂x
+
∂v

∂y
= 0,

σy|y=±h = −py,
σx|x=gi(y)

= −px (i = 1, 2)

(1)

Здесь G = G0 +G1(x, y), G0=const соответствует модулю сдвига однородного
материала, а G1(x, y) описывает изменение физических свойств полосы в про-
цессе эксплуатации. Функции g1(y) и g2(y) описывают правую и левую кромки
поперечного сечения полосы после деформирования.

Если пренебречь несовершенствами, т.е. qi(y) = 0 (i = 1, 2), то задача (1)
допускает решение, описывающее однородное состояние:

σx = σ0
x = −px, σy = σ0

y = −py, τ = τ 0 = 0,
u = u0 = ε0xx, v = v0 = ε0yy,

(2)

где константы ε0x, ε0y из (2), определяются следующим соотношением

ε0y =
px − py
4G

, ε0x = −ε0y.

В процессе эксплуатации происходят незначительные изменения геометриче-
ских размеров и физических свойств материала. Проанализируем, насколько
эти изменения могут повлиять на напряженно-деформированное состояние по-
лосы, описываемое (2). Т.е. проведем исследование непрерывной зависимости
решения задачи (1) от исходных данных при G = G0, qi(y) = 0 (i = 1, 2).

2. Исследования непрерывной зависимости решения от исходных
данных. Согласно [10], [14], следует рассмотреть вспомогательную линеари-
зованную однородную задачу относительно функций ζi, которая получена на
основе (1) при σx = σ0

x+ ζ1, σy = σ0
y + ζ2, τ = τ 0+ ζ3, u = u0+ ζ4, v = v0+ ζ5.

Для непрерывной зависимости необходимо, чтобы она была регулярной, все ее
первые производные по всем своим аргументам были непрерывны, а также она
имела только тривиальное решение.

Будем проводить исследование на основе подходов, предложенных в [9] и [11]
В первом случае, при построении математической модели для исследования
непрерывности ограничимся учетом деформации границы контура поперечного
сечения:
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∂ζ1
∂x

+
∂ζ3
∂y

= 0,
∂ζ2
∂y

+
∂ζ3
∂x

= 0,

ζ1 − ζ2 = 4G0
∂ζ4
∂x

, ζ3 = G0

(
∂ζ5
∂x

+
∂ζ4
∂y

)
∂ζ4
∂x

+
∂ζ5
∂y

= 0,

(3)

ζ2|y=±h = 0, ζ4|y=±h = 0,(
ζ3 + py

∂ζ4(0, y)

∂y

)
x=0

= 0, ζ1|x=0 = 0,(
ζ3 + py

∂ζ4(ℓ, y)

∂y

)
x=ℓ1

= 0, ζ1|x=ℓ1
= 0,

ℓ1 = 2ℓ

(
1 +

px − py
4G0

) (4)

В результате проведенных исследований получили, что эта задача имеет
ненулевое решение, если исходные данные удовлетворяют условию:

cosh2((αx − αy − 2)πmn)−m2n2(1 + αy)
2(αx − αy − 2)2 = 0 (5)

αx =
px
2G0

, αy =
py
2G0

, m =
ℓ

h
, n ∈ Z

Если положить αx = 0, то можно сравнить αy = 0 с эйлеровой критической
нагрузкой p∗ для продольного изгиба стержня с шарнирно закрепленными кон-
цами, как это сделано в работах [9] и [12]. В соответствии с результатами из [9]
при m = 0.1 значения параметров усилий практически равны:

αy

p∗
= 1.00143.

Проведем далее исследование, выполненное согласно подходу, предложенно-
му Новожиловым [11], [15]. Учитывая углы поворота в уравнениях равновесия
для вспомогательной задачи, получаем:

∂ζ1
∂x

+
∂ζ3
∂y

+
py
2

∂

∂y

(
∂ζ5
∂x

− ∂ζ4
∂y

)
= 0,

∂ζ2
∂y

+
∂ζ3
∂x

− px
2

∂

∂x

(
∂ζ5
∂x

− ∂ζ4
∂y

)
= 0,

∂ζ4
∂x

+
∂ζ5
∂y

= 0,

ζ1 − ζ2 = 4G0
∂ζ4
∂x

, ζ3 = G0

(
∂ζ5
∂x

+
∂ζ4
∂y

)
.

(6)

Граничные условия имеют вид (4). Группа условий, касающаяся регулярно-
сти и непрерывности производных в (6), (4) выполняется. В результате анализа
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существования только тривиального решения было получено соотношение, ко-
гда это требование не выполняется

2(cosh(ℓ1k) cosh
(
ℓ1k

√
1− γ

)
− 1)

sinh(ℓ1k) sinh
(
ℓ1k

√
1− γ

) =

=
(2− γ + 2αy)

√
1− γ

(2− γ − γαy)(1 + αy)
+

(2− γ − γαy)(1 + αy)

(2− γ + 2αy)
√
1− γ

(7)

γ =
αy − αx

1− αx

, k =
πn

ℓ

Условие (7) ограничивает область непрерывной зависимости решения задачи
(1) от функций, характеризующих физические и геометрические несовершен-
ства. Вид (7) при αx = 0 с точностью до обозначений совпадает с полученным
в [9].

На рис. 1 представлена область при αx = 0 для материала, изучаемого в [9].
Результаты, полученные в [9] обозначены (I), а (II) соответствует кривой, най-
денной в [12]. Как видно, для малых m значения критических параметров эти
линии совпадают. Значениям m ≥ 0.2 будут соответствовать напряжения, выхо-
дящие за пределы упругости известных материалов. Это полностью согласуется
с результатами, приведенными в работах [8], [9], [12].

Рис. 1. Область непрерывной зависимости для 3σy

2E = 0.01184 при αx = 0

Сопоставляя результаты, полученные без учета углов поворота в уравнениях
равновесия и с ними (рис. 2), получаем, что (7) дает более низкие значения для
границы области непрерывной зависимости решения задачи (1) от исходных
данных. Причем, при исследовании в рамках первого подхода, получаем, что
решение (2) будет приближенно описывать состояние полосы при любых зна-
чениях сжимающих усилий в упругой области, что соответствует завышенной
оценке.
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а) m=0.2 б) αx = 0

Рис. 2. Сравнение областей непрерывной зависимости, полученных на основе (5) и
(7)

Поэтому в дальнейшем при рассмотрении непрерывной зависимости реше-
ния задачи (1) от исходных данных при G = G0, qi(y) = 0 (i = 1, 2) будем
использовать условие (7).

3. Построение областей непрерывной зависимости для различных
несжимаемых изотропных материалов. Для несжимаемых изотропных

материалов, у которых
3σy
2E

> 1, область непрерывной зависимости на плоскости
параметров αx, αy для частных случаев отношения линейных размеров сечения
будет иметь вид (рис. 3)

а) m=0.5 б) m=2

Рис. 3. Область непрерывной зависимости для различных размеров поперечного се-
чения полосы
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Поскольку в процессе эксплуатации не только физические свойства меняют-
ся, но и размеры сечения тоже могут претерпевать незначительные изменения,
то линии (7) соответствуют случаям, когда решение (2) уже не будет описывать
напряженно-деформированное состояние реальной полосы и не будет соответ-
ствовать установленным эксплуатационным и расчетным требованиям. В этом
случае оно становиться предельным (потеря устойчивости равновесной формы).

Если рассмотреть вариант, когда в процессе эксплуатации одно из усилий
не изменяет своего значения, то можно указать область изменения размеров
сечения и параметра другого сжимающего усилия, при которых напряженно-
деформированное состояние полосы будет близко к однородному.

Далее рассмотрим случай, когда αy или αx не меняют своего значения. Об-
ласть, ограниченная (7) на плоскости параметров размеров поперечного сече-
ния и усилия будет иметь вид, представленный на (рис. 4).

а) αx = 0.2 б) αx = 0.8

в) αy = 0.2 г) αy = 0.5

Рис. 4. Область непрерывной зависимости для различных сжимающих усилий

Поскольку в процессе эксплуатации геометрические размеры не претерпева-
ют значительных изменений, то «опасные» значения параметров сжимающих
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воздействий будут наблюдаться в окрестностях точек, принадлежащих линиям
(7).

Для случая, когда у несжимаемого изотропного материала
3σy
2E

<< 1, линии
(7) имеют вид, аналогичный представленному на рис.4. Но для подобных мате-
риалов при достаточно малых нагрузках начинают проявляться пластические
свойства, и напряжения превосходят предел упругости (рис.5). Учитывая это,
получаем, что либо решение (2) будет приближенно описывать напряженно-
деформированное состояние полосы во всей области упругости, либо только в
той ее части, которая ограничена линией (7).

а) m=0.5 б) m=2

Рис. 5. Область непрерывной зависимости для различных размеров поперечного се-
чения полосы

4. Заключение Таким образом, использование в математической модели
для изучения непрерывной зависимости уравнений равновесия в форме, пред-
ложенной Новожиловым, предпочтительнее, поскольку получаем более низкую
границу области такой зависимости. Недостатком такого подхода являются бо-
лее сложные выкладки при проверке необходимых условий.

Когда исходные параметры достигают значений, соответствующих кривой
(7), зависимость теряет свою непрерывность. В итоге могут появиться значи-
тельные перемещения, прогибы или углы поворота, что приводит систему к
предельному состоянию. В частности происходит потеря устойчивости равно-
весной формы (2), и состояние полосы, соответствующее (2) станет предель-
ным. Полученные результаты следует учитывать при проектировании различ-
ных конструкций, при анализе соответствия установленным эксплуатационным
требованиям и расчетным допускам.
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