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Аннотация. В настоящем исследовании предлагается алгоритм получения аппроксимации
пятого порядка потенциала силовых и моментных напряжений гемитропного микрополяр-
ного упругого тела, учитывающего (кроме базовой квадлатичной аппроксимации) поправки
вплоть до пятого алгебраического порядка, при систематическом использовании теории ал-
гебраических инвариантов. С этой целью обсуждается полный перечень неприводимых ин-
вариантов для системы двух асимметричных тензоров второго ранга в форме инвариантных
следов. В результате предложен исходный набор из 86 инвариантных следов, состоящий из 8
индивидуальных инвариантов, 17 парных, 44 инвариантных троек и 17 инвариантных четве-
рок. Здесь классификация проведена по количеству тензорных литер (максимальное число
литер равно 4). Максимальная степень исходных инваринатов равна 6. Из 86 элементов за-
тем отфильтрованы 63 следа по правилу возрастания алгебраических степеней инвариантов:
2 линейных инварианта, 6 квадратичных, 12 кубических, 19 четвертой степени, 24 инвариан-
та пятой степени. Предложена схема построения инвариантов пятой степени, разбитых для
удобства по семи группам, на основе правил: произведения линейных инвариантов между
собой, попарные произведения квадратичных и кубических инвариантов между собой, по-
парные произведения инвариантов первой и четвертой степени, произведения линейных и
кубических инвариантов, произведения линейных, возведенных в куб, и квадратичных инва-
риантов, произведения линейных и квадратов квадратичных инвариантов, исходные инвари-
анты пятой степени. Таким образом, гемитропный микрополярный потенциал определяется
с помощью 366 механических модулей. Получены определяющие уравнения для силовых и
моментных напряжений, включающие поправки второй, третьей и четвертой алгебраической
степени, справедливые в произвольной криволинейной системе координат.
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Abstract. This study deals with an algorithm for deriving a quintic-order approximation of the
potential for force and moment stresses in a hemitropic micropolar elastic solid. The formulation
accounts for corrections up to the fifth algebraic order—extending beyond the fundamental
quadratic approximation through the systematic application of algebraic invariant theory.

To this end, the complete set of irreducible invariants for a system of two asymmetric second-
rank tensors is discussed and represented in the form of invariant traces. Consequently, an initial
set of 86 invariant traces is proposed, comprising 8 single invariants, 17 dual combinations, 44
invariant triples, and 17 invariant quadruples. This classification is based on the number of tensor
literals involved, with a maximum of four literals. The maximum degree of the initial invariants is
six.

From these 86 elements, 63 traces are subsequently selected according to the rule of increasing
algebraic degree: 2 linear invariants, 6 quadratic, 12 cubic, 19 of the fourth degree, and 24 invariants
of the fifth degree. A scheme for obtaining the fifth-degree invariants is introduced, partitioned for
convenience into seven groups based on the following rules: products of linear invariants with each
other, pairwise products of quadratic and cubic invariants, pairwise products of first- and fourth-
degree invariants, products of linear and cubic invariants, products of linear invariants raised to
the third power with quadratic invariants, products of linear invariants with squares of quadratic
invariants, and the original fifth-degree invariants.

Thus, the hemitropic micropolar potential is characterized by 366 mechanical moduli.
Constitutive equations for force and couple stresses are derived, incorporating second-, third-,
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Введение.

Вводные замечания. При построении определяющих уравнений в меха-
нике континуума исключительное значение имеет теория рациональных алгеб-
раических инвариантов [1—6]. Инварианты и псевдоинварианты позволяют без
труда сформулировать аппроксимации заданной степени для энергетических
потенциалов силовых и моментных напряжений в микрополярной механике
упругих тел [7—18]. В особенности это справедливо при построении матема-
тических моделей гемитропных микрополярных упругих сред. В этом случае,
наиболее подходящим является A-представление [17, 18] энергетических форм,
являющееся линейной комбинацией индивидуальных и совместных целых ра-
циональных алгебраических инвариантов асимметричного тензора деформаций
и градиента поля микроповоротов относительно гемитропной группы преобра-
зований.

Основным понятием теории алгебраических инвариантов является индиви-
дуальный инвариант (псевдоинвариант) тензора (псевдотензора) [1, с. C. 136].
При этом, если алгебраический вес g инварианта равен нулю, то инвариант но-
сит название абсолютного инварианта, а при g ̸= 0 — относительного или псев-
доинварианта. Инварианты тензора можно задавать несколькими способами [1,
с. C. 327]. Например, для аффинора A·s

k·, следы его степеней будут образовывать
бесконечную систему целых рациональных инвариантов:
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С другой стороны, важную роль играют также следующие инварианты:
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Квадратные скобки в (2) обозначают операцию альтернирования по заклю-
ченным в них индексам. Например,
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Выполняя операцию альтернирования в (2), можно получить формулы Варинга
связывающие между собой инварианты системы (2) и системы (1).

Совместные инварианты некоторого набора, состоящего из нескольких тен-
зоров/псевдотензоров, определяются следами степеней внутренних совместных
произведений тензоров, составляющих набор.

Системы инвариантов (1) и (2) являются бесконечными множествами. Кроме
того, целая рациональная функция (с числовыми коэффициентами) от несколь-
ких инвариантов системы также будет (при известных условиях) инвариантом
того же набора.

В связи с этим, возникает понятие неприводимого инварианта системы, т.е.
такого инварианта, который не является целой рациональной функцией от неко-
торых других инвариантов той же системы. Множество всех неприводимых ин-
вариантов системы называется её полной системой инвариантов, т.е. множество
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инвариантов, представляющих собой целые рациональные функции инвариан-
тов и если, кроме того, никакой из инвариантов не является целой рациональной
функцией остальных (или некоторых из них).

Следует отметить, что с монография [2] посвящена построению систем ин-
вариантов для различных наборов тензоров. Однако, в ней и ее английском
оригинале присутствуют досадные опечатки [2, C. 65, Табл. 2]. Среди индиви-
дуальных инвариантов матрицы a присутствует инвариант b3. В строке для
набора совместных инвариантов двух симметричных и двух антисимметрич-
ных матриц второго ранга a, b, u и v отсутствуют инварианты u2avb2∗†, вме-
сто инвариантов uva2b∗† присутствуют инварианты uva2b∗ и uvba2∗. Однако,
руководствуясь статьями [5, 6] можно составить верный полный набор индиви-
дуальных и совместных гемитропных инвариантов двух симметричных и двух
антисимметричных тензоров второго ранга (см. [6, P. 80, Table 1]). Вместе с тем,
первую часть статьи [5] следует читать с осторожностью, т.к. по утверждению
самого автора в ней также присутствуют неточности.

Настоящая работа продолжает цикл работ [19—21], посвященных формули-
ровкам энергетических форм нелинейных микрополярных континуумов. Здесь.
предлагается алгоритм получения аппроксимации пятого порядка потенциа-
ла силовых и моментных напряжений гемитропного микрополярного упругого
тела, учитывающего (кроме базовой квадлатичной аппроксимации) поправки
вплоть до пятого алгебраического порядка, при систематическом использова-
нии теории алгебраических инвариантов. С этой целью обсуждается полный
перечень неприводимых инвариантов для системы двух асимметричных тен-
зоров второго ранга в форме инвариантных следов. В результате предложен
исходный набор из 86 инвариантных следов, состоящий из 8 индивидуальных
инвариантов, 17 парных, 44 инвариантных троек и 17 инвариантных четверок.
Здесь классификация проведена по количеству тензорных литер (максималь-
ное число литер равно 4). Максимальная степень исходных инваринатов равна
6.

Из 86 элементов затем отфильтрованы 63 следа по правилу возрастания ал-
гебраических степеней инвариантов: 2 линейных инварианта, 6 квадратичных,
12 кубических, 19 четвертой степени, 24 инварианта пятой степени. Предложена
схема построения инвариантов пятой степени, разбитых для удобства по семи
группам, на основе правил: произведения линейных инвариантов между собой,
попарные произведения квадратичных и кубических инвариантов между собой,
попарные произведения инвариантов первой и четвертой степени, произведения
линейных и кубических инвариантов, произведения линейных, возведенных в
куб, и квадратичных инвариантов, произведения линейных и квадратов квад-
ратичных инвариантов, исходные инварианты пятой степени.



ОБ ОДНОМ АЛГОРИТМЕ АППРОКСИМАЦИИ 287

Таким образом, гемитропный микрополярный потенциал определяется с по-
мощью 366 механических модулей. Получены определяющие уравнения для си-
ловых и моментных напряжений, включающие поправки второй, третьей и чет-
вертой алгебраической степени, справедливые в произвольной криволинейной
системе координат.

Изложение в значительной степени использует терминологию, обозначения,
методы и результаты, развитые в предыдущих статьях [17—32].

1. Инвариантные следы не выше пятой степени и образующие це-
лый рациональный базис относительно гемитропной группы. Рассмот-
рим систему, состоящую из двух асимметричных тензоров второго ранга. Каж-
дый из этих тензоров можно представить в виде алгебраической суммы сим-
метричной и антисимметричной частей, т.е.

A+V; B+W. (4)

При этом, справедливы следующие равенства:

A = AT; V = −VT;

B = BT; W = −WT.
(5)

Используя результаты, полученные в работах [2, 5, 6], для системы, состоящей
из двух симметричных A, B и двух антисимметричных V, W тензоров второго
ранга, можно построить систему исходных инвариантов. Следует отметить, что
рассуждения о совместных и индивидуальных инвариантах такой системы су-
щественно зависят от размерности пространства. Положим далее, что она равна
3. Полный набор исходных индивидуальных и совместных гемитропных инва-
риантов указанной системы тензоров состоит из 86 неприводимых элементов [2,
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5, 6], упорядоченных согласно [2, C. 65, Табл. 2], с исправлениями:

1 .) tr [A] 2 .) tr [A2] 3 .) tr [A3] 4 .) tr [B]

5 .) tr [B2] 6 .) tr [B3] 7 .) tr [V2] 8 .) tr [W2]

9 .) tr [AB] 10 .) tr [AB2] 11 .) tr [BA2] 12 .) tr [A2B2]

13 .) tr [V2A] 14 .) tr [V2A2] 15 .) tr [V2AVA2] 16 .) tr [V2B]

17 .) tr [V2B2] 18 .) tr [V2BVB2] 19 .) tr [W2A] 20 .) tr [W2A2]

21 .) tr [W2AWA2] 22 .) tr [W2B] 23 .) tr [W2B2] 24 .) tr [W2BWB2]

25 .) tr [VW] 26 .) tr [VAB] 27 .) tr [VA2B] 28 .) tr [VB2A]

29 .) tr [VA2B2] 30 .) tr [VA2BA] 31 .) tr [VB2AB] 32 .) tr [VA2B2A]

33 .) tr [VB2A2B] 34 .) tr [V2AB] 35 .) tr [V2A2B] 36 .) tr [V2B2A]

37 .) tr [V2AVB] 38 .) tr [V2AVB2] 39 .) tr [V2BVA2] 40 .) tr [WAB]

41 .) tr [WA2B] 42 .) tr [WB2A] 43 .) tr [WA2B2] 44 .) tr [WA2BA]

45 .) tr [WB2AB] 46 .) tr [WA2B2A] 47 .) tr [WB2A2B] 48 .) tr [W2AB]

49 .) tr [W2A2B] 50 .) tr [W2B2A] 51 .) tr [W2AWB] 52 .) tr [W2AWB2]

53 .) tr [W2BWA2] 54 .) tr [VWA] 55 .) tr [VWA2] 56 .) tr [V2WA]

57 .) tr [W2VA] 58 .) tr [V2WA2] 59 .) tr [W2VA2] 60 .) tr [V2AWA2]

61 .) tr [W2AVA2] 62 .) tr [VWB] 63 .) tr [VWB2] 64 .) tr [V2WB]

65 .) tr [W2VB] 66 .) tr [V2WB2] 67 .) tr [W2VB2] 68 .) tr [V2BWB2]

69 .) tr [W2BVB2] 70 .) tr [VWAB] 71 .) tr [VWBA] 72 .) tr [VWA2B]

73 .) tr [VWB2A] 74 .) tr [WVA2B] 75 .) tr [WVB2A] 76 .) tr [VWA2B2]

77 .) tr [VWA2BA] 78 .) tr [VWB2AB] 79 .) tr [V2WAB] 80 .) tr [W2VAB]

81 .) tr [V2AWB] 82 .) tr [W2AVB] 83 .) tr [V2BWA2] 84 .) tr [V2AWB2]

85 .) tr [W2BVA2] 86 .) tr [W2AVB2].

(6)

Здесь и далее будем опускать операцию внутреннего произведения тензоров,
т.е. запись A ·B сокращается до AB. В дальнейших рассуждениях ограничим-
ся гемитропными инвариантами не выше пятой степени из набора (6). Таких
инвариантов оказывается всего 63. Для удобства перенумеруем их согласно сле-
дующим правилам: 1.) инварианты нумеруются в порядке возрастания их ал-
гебраической степени; 2.) — в порядке увеличения количества различных со-
множителей во внутреннем произведении; 3.) — в алфавитном порядке литер.
При этом главным является правило 1.), а привила 2.) и 3.) — подчиненными.
Кроме того, правило 3.) подчинено также правилу 2.). В таком случае получим
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следующий упорядоченный набор инвариантов не выше пятой степени:

1.) tr [A] 2.) tr [B] 3.) tr [A2] 4.) tr [B2]

5.) tr [V2] 6.) tr [W2] 7.) tr [AB] 8.) tr [VW]

9.) tr [A3] 10.) tr [B3] 11.) tr [AB2] 12.) tr [BA2]

13.) tr [V2A] 14.) tr [V2B] 15.) tr [W2A] 16.) tr [W2B]

17.) tr [VAB] 18.) tr [WAB] 19.) tr [VWA] 20.) tr [VWB]

21.) tr [A2B2] 22.) tr [V2A2] 23.) tr [V2B2] 24.) tr [W2A2]

25.) tr [W2B2] 26.) tr [VA2B] 27.) tr [WA2B] 28.) tr [VB2A]

29.) tr [WB2A] 30.) tr [VWA2] 31.) tr [VWB2] 32.) tr [V2AB]

33.) tr [W2AB] 34.) tr [V2WA] 35.) tr [V2WB] 36.) tr [W2VA]

37.) tr [W2VB] 38.) tr [VWAB] 39.) tr [VWBA] 40.) tr [VA2B2]

41.) tr [VA2BA] 42.) tr [VB2AB] 43.) tr [V2A2B] 44.) tr [V2B2A]

45.) tr [V2AVB] 46.) tr [WA2B2] 47.) tr [WA2BA] 48.) tr [WB2AB]

49.) tr [W2A2B] 50.) tr [W2B2A] 51.) tr [W2AWB] 52.) tr [V2WA2]

53.) tr [W2VA2] 54.) tr [V2WB2] 55.) tr [W2VB2] 56.) tr [VWA2B]

57.) tr [VWB2A] 58.) tr [WVA2B] 59.) tr [WVB2A] 60.) tr [V2WAB]

61.) tr [W2VAB] 62.) tr [V2AWB] 63.) tr [W2AVB]

(7)

Каждый из инвариантных следов снабжается индивидуальным идентифика-
ционным номером. Отметим, что в наборе (7) присутствует: два инварианта
первой степени — 1.), 2.); шесть инвариантов второй степени — 3.)–8.); две-
надцать инвариантов третьей степени — 9.)–20.); девятнадцать инвариантов
четвертой степени — 21.)–39.); двадцать четыре инварианта пятой степени —
40.)–63.).

Сначала выберем линейные инварианты из списка (7). Их всегда два:

1, 2. (8)

Сформируем затем набор квадратичных инвариантов из приведенного спис-
ка. Ясно, что указанные инварианты суть (номера указывают на сами инвари-
анты):

12, 1 · 2;
22;

3, 4, 5, 6, 7, 8.

(9)

Набор (9) состоит из 9 квадратичных гемитропных инвариантов, которые
были использованы ранее для построения квадратичной энергетической формы
гемитропного микрополярного упругого тела [17, 18, 28—30].
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Для определения аппроксимаций более высокой степени (третьей, четвертой,
пятой, шестой ...) энергетических форм в конечном итоге необходимо расши-
рить систему рациональных инвариантов до инвариантов более высоких целых
степеней (3, 4, 5, ...).

Выпишем далее неприводимую систему кубических инвариантов, представ-
ляющих собой совместные произведения инвариантов из списка (7) общей степе-
ни 3. Полный перечень из 28 кубических гемитропных инвариантов принимает
вид:

13, 12 · 2, 1 · 22;
23;

1 · 3, 1 · 4, 1 · 5, 1 · 6, 1 · 7, 1 · 8;
2 · 3, 2 · 4, 2 · 5, 2 · 6, 2 · 7, 2 · 8;
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.

(10)

Найдем полный набор инвариантов четвертой степени, представляющих со-
бой произведения инвариантов из списка (7) общей итоговой алгебраической
степени 4 по следующей схеме. Сначала найдем произведения линейных инва-
риантов друг с другом:

14, 13 · 2, 12 · 2, 1 · 23;
24.

(11)

Затем отберем произведения квадратичных инвариантов друг с другом:

32, 3 · 4, 3 · 5, 3 · 6, 3 · 7, 3 · 8;
42, 4 · 5, 4 · 6, 4 · 7, 4 · 8;
52, 5 · 6, 5 · 7, 5 · 8;
62, 6 · 7, 6 · 8;
72, 7 · 8;
82.

(12)

Произведения общей четвертой алгебраической степени, включающие линей-
ные и квадратичные инварианты, вычисляются согласно:

12 · 3, 12 · 4, 12 · 5, 12 · 6, 12 · 7, 12 · 8;
22 · 3, 22 · 4, 22 · 5, 22 · 6, 22 · 7, 22 · 8;
1 · 2 · 3, 1 · 2 · 4, 1 · 2 · 5, 1 · 2 · 6, 1 · 2 · 7, 1 · 2 · 8.

(13)

Произведения четвертой степени, состоящие из линейных и кубических ин-
вариантов, перечисляются ниже:

1 · 9, 1 · 10, 1 · 11, 1 · 12, 1 · 13, 1 · 14, 1 · 15, 1 · 16, 1 · 17, 1 · 18, 1 · 19, 1 · 20;
2 · 9, 2 · 10, 2 · 11, 2 · 12, 2 · 13, 2 · 14, 2 · 15, 2 · 16, 2 · 17, 2 · 18, 2 · 19, 2 · 20.

(14)
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Наконец отделим исходные инварианты четвертой степени:

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39. (15)

Объединив полученные группы произведений (11), (12), (13), (14), (15) полу-
чим искомый полный набор из 5+21+18+24+19 = 87 инвариантов четвертой
степени.

Найдем теперь полный набор инвариантов пятой алгебраической степени,
представляющих собой совместные произведения инвариантов из списка (7) об-
щей алгебраической степени 5 по схеме, которая была использована для полу-
чения полного набора гемитропных инвариантов общей алгебраической степени
4.

Сначала найдем произведения линейных инвариантов друг с другом:

15, 14 · 2, 13 · 22, 12 · 23, 1 · 24;
25.

(16)

Произведения квадратичных и кубических инвариантов друг с другом при-
мут вид:

3 · 9, 3 · 10, 3 · 11, 3 · 12, 3 · 13, 3 · 14, 3 · 15, 3 · 16, 3 · 17, 3 · 18, 3 · 19, 3 · 20;
4 · 9, 4 · 10, 4 · 11, 4 · 12, 4 · 13, 4 · 14, 4 · 15, 4 · 16, 4 · 17, 4 · 18, 4 · 19, 4 · 20;
5 · 9, 5 · 10, 5 · 11, 5 · 12, 5 · 13, 5 · 14, 5 · 15, 5 · 16, 5 · 17, 5 · 18, 5 · 19, 5 · 20;
6 · 9, 6 · 10, 6 · 11, 6 · 12, 6 · 13, 6 · 14, 6 · 15, 6 · 16, 6 · 17, 6 · 18, 6 · 19, 6 · 20;
7 · 9, 7 · 10, 7 · 11, 7 · 12, 7 · 13, 7 · 14, 7 · 15, 7 · 16, 7 · 17, 7 · 18, 7 · 19, 7 · 20;
8 · 9, 8 · 10, 8 · 11, 8 · 12, 8 · 13, 8 · 14, 8 · 15, 8 · 16, 8 · 17, 8 · 18, 8 · 19, 8 · 20.

(17)
Произведения инвариантов первой и четвертой степеней примут вид:

1 · 21, 1 · 22, 1 · 23, 1 · 24, 1 · 25, 1 · 26, 1 · 27, 1 · 28, 1 · 29, 1 · 30,
1 · 31, 1 · 32, 1 · 33, 1 · 34, 1 · 35, 1 · 36, 1 · 37, 1 · 38, 1 · 39;
2 · 21, 2 · 22, 2 · 23, 2 · 24, 2 · 25, 2 · 26, 2 · 27, 2 · 28, 2 · 29, 2 · 30,
2 · 31, 2 · 32, 2 · 33, 2 · 34, 2 · 35, 2 · 36, 2 · 37, 2 · 38, 2 · 39.

(18)

Произведения инвариантов первой и третьей степеней примут вид:

12 · 9, 12 · 10, 12 · 11, 12 · 12, 12 · 13, 12 · 14,
12 · 15, 12 · 16, 12 · 17, 12 · 18, 12 · 19, 12 · 20;
22 · 9, 22 · 10, 22 · 11, 22 · 12, 22 · 13, 22 · 14,
22 · 15, 22 · 16, 22 · 17, 22 · 18, 22 · 19, 22 · 20;
1 · 2 · 9, 1 · 2 · 10, 1 · 2 · 11, 1 · 2 · 12, 1 · 2 · 13, 1 · 2 · 14,
1 · 2 · 15, 1 · 2 · 16, 1 · 2 · 17, 1 · 2 · 18, 1 · 2 · 19, 1 · 2 · 20.

(19)
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Произведения кубов инвариантов первой и второй степеней друг с другом
примут вид:

13 · 3, 13 · 4, 13 · 5, 13 · 6, 13 · 7, 13 · 8;
23 · 3, 23 · 4, 23 · 5, 23 · 6, 23 · 7, 23 · 8;
12 · 2 · 3, 12 · 2 · 4, 12 · 2 · 5, 12 · 2 · 6, 12 · 2 · 7, 12 · 2 · 8;
1 · 22 · 3, 1 · 22 · 4, 1 · 22 · 5, 1 · 22 · 6, 1 · 22 · 7, 1 · 22 · 8.

(20)

Произведения инвариантов первой степени и квадратов квадратичных инва-
риантов примут вид:

1 · 32, 1 · 3 · 4, 1 · 3 · 5, 1 · 3 · 6, 1 · 3 · 7, 1 · 3 · 8;
1 · 42, 1 · 4 · 5, 1 · 4 · 6, 1 · 4 · 7, 1 · 4 · 8;
1 · 52, 1 · 5 · 6, 1 · 5 · 7, 1 · 5 · 8;
1 · 62, 1 · 6 · 7, 1 · 6 · 8;
1 · 72, 1 · 7 · 8;
1 · 82;
2 · 32, 2 · 3 · 4, 2 · 3 · 5, 2 · 3 · 6, 2 · 3 · 7, 2 · 3 · 8;
2 · 42, 2 · 4 · 5, 2 · 4 · 6, 2 · 4 · 7, 2 · 4 · 8;
2 · 52, 2 · 5 · 6, 2 · 5 · 7, 2 · 5 · 8;
2 · 62, 2 · 6 · 7, 2 · 6 · 8;
2 · 72, 2 · 7 · 8;
2 · 82.

(21)

Наконец отберем исходные инварианты пятой алгебраически степени:

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63.
(22)

Объединив группы произведений исходных вариантов друг с другом (16)–
(22) получим искомый полный набор из 6 + 72 + 38 + 36 + 24 + 42 + 24 = 242
гемитропных инварианта пятой степени.

2. Аппроксимация пятого порядка энергетической формы гемит-
ропного микрополярного упругого тела. Опираясь на результаты преды-
дущего раздела, построим систему индивидуальных и совместных целых ра-
циональных алгебраических инвариантов симметричных и антисимметричных
частей асимметричных тензоров деформаций и тензора изгиба–кручения. Для
этого следует положить:

A = sym ϵ, B = symκ,

V = asym ϵ, W = asymκ.
(23)
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В смешанных компонентах соотношения (23) примут вид

A·k
s· =

1

2

[
ϵ·ks· + ϵk··s

]
, B·k

s· =
1

2

[
κ·ks· + κk··s

]
,

V ·k
s· =

1

2

[
ϵ·ks· − ϵk··s

]
, W ·k

s· =
1

2

[
κ·ks· − κk··s

]
.

(24)

Воспользовавшись заменой (23) и принимая схему нумерации из работ [17,
18], систему квадратичных гемитропных инвариантов (9) можно выписать со-
гласно [33], а систему гемитропных кубических инвариантов (10) согласно [20].
Аналогичным способом можно получить систему гемитропных инвариантов
четвертой степени.

А-представление аппроксимации четвертого порядка энергетической формы
гемитропного микрополярного упругого тела, соответствующее системе инва-
риантов второй, третьей, четвертой и пятой степеней запишем в сокращенной
форме:

U =
9∑

a=1

2C
a

2I
a
+

28∑
c=1

3C
c

3J
c
+

87∑
m=1

4C
m

4K
m
+

242∑
s=1

5C
s

5L
s
, (25)

где введены новые обозначения для определяющих модулей: 2C
a

(a = 1, ..., 9) —
определяющие модули квадратичного приближения; 3C

c
(c = 1, ..., 28) — опре-

деляющие модули, связанные с кубическими поправками; 4C
m

(m = 1, ..., 87) —
определяющие модули, связанные с поправками четвертой степени; 5C

s
(s =

1, ..., 242) — определяющие модули, связанные с поправками четвертой степени;
2I
a
(a = 1, ..., 9) — квадратичные инварианты; 3J

c
(c = 1, ..., 28) — кубические инва-

рианты; 4K
m

(m = 1, ..., 87) — инварианты четвертой степени; 5L
s

(s = 1, ..., 242) —
инварианты пятой степени. Стоит отметить чувствительность некоторых опре-
деляющих модулей к зеркальным отражениям и инверсиям трехмерного про-
странства, что связано с возможностью присвоения нечетного алгебраического
веса тензору изгиба–кручения.

Определяющие модули (9 + 28 + 87 + 242 = 366): 2C
a

(a = 1, ..., 9); 3C
c

(c = 1, ..., 28); 4C
m

(m = 1, ..., 87) и 5C
s

(s = 1, ..., 242), присутствующие в по-
тенциале силовых и моментных напряжений (25), являются неопределенны-
ми коэффициентами в линейной комбинации неприводимой системы инвариан-
тов второй, третьей, четвертой и пятой алгебраических степеней системы двух
асимметричных тензоров второго ранга.

Определяющие уравнения для силовых и моментных напряжений, соответ-
ствующие энергетической форме (25), получены как в виде

ts··k =
∂U

∂ (ϵ·ks·)
, µs·

·k =
∂U

∂ (κ·ks·)
. (26)
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Для симметричных и антисимметричных частей силовых и моментных на-
пряжений справедливы следующие соотношения

1

2

[
t·ks· + tk··s

]
=

1

2

[ ∂U

∂ (ϵ·ks·)
+

∂U

∂ (ϵk··s)

]
,

1

2

[
µ·k
s· + µk·

·s
]
=

1

2

[ ∂U

∂ (κ·ks·)
+

∂U

∂ (κk··s)

]
,

1

2

[
t·ks· − tk··s

]
=

1

2

[ ∂U

∂ (ϵ·ks·)
− ∂U

∂ (ϵk··s)

]
,

1

2

[
µ·k
s· − µk·

·s
]
=

1

2

[ ∂U

∂ (κ·ks·)
− ∂U

∂ (κk··s)

]
.

(27)

Подставив выражение для потенциала (25) в уравнения (26), получим:

ts··k =
9∑

c=1

2C
c

∂ 2I
c

∂ (ϵ·ks·)
+

28∑
a=1

3C
a

∂ 3J
a

∂ (ϵ·ks·)
+

87∑
m=1

4C
m

∂ 4K
m

∂ (ϵ·ks·)
+

242∑
s=1

5C
s

∂ 5L
s

∂ (ϵ·ks·)
,

µs·
·k =

9∑
c=1

2C
c

∂ 2I
c

∂ (κ·ks·)
+

28∑
a=1

3C
a

∂ 3J
a

∂ (κ·ks·)
+

87∑
m=1

4C
m

∂ 4K
m

∂ (κ·ks·)
+

242∑
s=1

5C
s

∂ 5L
s

∂ (κ·ks·)
.

(28)

Остается вычислить частные производные в выражениях (28) для получе-
ния точной формулировки определяющих уравнений нелинейного гемитропно-
го микрополярного тела, учитывающие поправка второй, третьей, четвертой и
пятой алгебраической степени.

3. Заключение. В настоящей работе теория алгебраических инвариантов
используется с целью получения аппроксимации пятого порядка энергетической
формы нелинейного гемитропного микрополярного упругого тела. Алгоритм
развивается на базе исходной системы инвариантных следов. Алгебраические
инварианты представляют собой инвариантные следы, вообще говоря, непере-
становочных степеней внутренних произведений целых степеней тензоров вто-
рого ранга, составляющих исследуемую систему. Подводя итог настоящего ис-
следования, заключаем:

(1) С помощью теории целых рациональных алгебраических инвариантов
(псевдоинвариантов) исследовано полное множество неприводимых ин-
вариантов для системы двух асимметричных тензоров второго ран-
га в форме инвариантных следов. В результате выделен набор из 86
инвариантных следов, состоящий из 8 индивидуальных инвариантов,
17 парных, 44 инвариантных троек и 17 инвариантных четверок, т.е.
8 + 17 + 44 + 17 = 86.

(2) Из 86 элементов затем отфильтрованы по правилу возрастания алгебра-
ических степеней инвариантов: 2 линейных инварианта, 6 квадратичных,
12 кубических и 19 инвариантов четвертой степени, (2+6+12+19 = 39).
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Предложена схема построения 39 инвариантов пятой степени, разбитых
по семи группам.

(3) Найдены целые рациональные произведения пятой алгебраической сте-
пени, сформированных из исходных 63 элементов, по следующей схе-
ме: произведения линейных инвариантов между собой (5), произведения
квадратичных инвариантов между собой (21), произведения линейных
и квадратичных инвариантов (18), попарные произведения линейных и
кубических инвариантов (24), собственно инварианты четвертой степени
(19). Всего: (5 + 21 + 18 + 24 + 19 = 87).

(4) Построен потенциал силовых и моментных напряжений гемитропного
микрополярного упругого тела, содержащий аппроксимации второго,
третьего, четвертого и пятого порядков. Таким образом микрополяр-
ный потенциал содержит всего 9 + 28 + 87 + 242 = 366 гемитропных
механических модулей.

(5) Получены определяющие уравнения для силовых и моментных напряже-
ний, включающие поправки второй, третьей и четвертой алгебраической
степени.
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10. Neuber H. Über Probleme der Spannungskonzentration im Cosserat-Körper // Acta
Mechanica. – 1966. – Т. 2. – С. 48–69. – DOI: 10.1007/BF01176729.

11. Neuber H. On the general solution of linear-elastic problems in isotropic and
anisotropic Cosserat continua // Applied Mechanics: Proceedings of the Eleventh
International Congress of Applied Mechanics Munich (Germany) 1964. – Springer.
1966. – С. 153–158. – DOI: 10.1007/978-3-662-29364-5\_16.

12. Neuber H. On the Effect of Stress Concentration in Cosserat Continua // Mechanics
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